2.1.5 Diferentsiaalvõrrandi erilahendid

Mittehomogeense diferentsiaalvõrrandi (2.21) vabaliikmele lisame lauskoormusega ekvivalentse üldistatud koormuse [YSM00].
$\displaystyle {\theta}^{IV} - \hspace*{1pt}{{\kappa}}^{2}{\theta}^{\prime\prime...
...t}\frac{\mathit{M}_{x}{\delta}\left(t - x_{0}\right)}{E\hspace*{1pt}I_{\omega}}$     (2.37)

Siin on
$ {\mathit{M}_{x}\hspace*{1pt}{\delta}\left(t - x_{0}\right)}/{E\hspace*{1pt}I_{\omega}}$ lauskoormusega $ {m_{x}} = q_{z}\hspace*{-2pt}\cdot\hspace*{-2pt}e$ (jn 1.19 a) ekvivalentne koguväändemoment (2.1)), kus $ \mathit{M}_{x} = F_{z}\hspace*{-2pt}\cdot\hspace*{-2pt}e$ ning e on jõu $ F_{z}$ kaugus lõikekeskmeid ühendavast teljest (jn 1.19 b);
$ {\delta}\left(t - a\right)$ - Dirac'i 2.4 deltafunktsioon.

Mittehomogeense diferentsiaalvõrrandi (2.37) erilahendit $ {\theta}_{e}\left(x\right)$ (2.22) otsime Cauchy2.5 valemi [Sad63, lk 40], [Ste59] abil:

$\displaystyle {\theta}_{e}\left(x\right) = \int_{x_{0}}^{x}K\left(x,t\right)
f_{n}\left(t\right)dt$     (2.38)

kus $ K\left(x,t\right)$ on vastava homogeense diferentsiaalvõrrandi normeeritud lahend.

Täpsemalt,

$\displaystyle {\theta}_{e}\left(x\right) = \int_{x_{0}}^{x}K_{4}\left(x,t\right...
...4}\left(t\right)dt +
\int_{x_{0}}^{x}K_{3}\left(x,t\right)f_{3}\left(t\right)dt$     (2.39)

Siin kasutame normeeritud lahendite fundamentaalsüsteemi (2.28):

$\displaystyle K_{4}\left(x,t\right)$ $\displaystyle =$ $\displaystyle {\theta}_{4}\left(x - t\right) = {\frac{1}{\kappa^{3}}\left( \mat...
...space*{1pt}} -{{\kappa \hspace*{1pt}\left(x - t\right) }\hspace*{1pt}}\right) }$ (2.40)
$\displaystyle K_{3}\left(x,t\right)$ $\displaystyle =$ $\displaystyle {\theta}_{3}\left(x - t\right) = {\frac{1}{\kappa^{2}}\left( \mat...
...pace*{1pt} {{\kappa \hspace*{1pt}\left(x - t\right) }\hspace*{1pt}} -1 \right)}$ (2.41)

ja koormusfunktsioone $ f_{n}\left(t\right)$:
$\displaystyle f_{4}\left(t\right) = \hspace*{1pt}\frac{m_{x}\left(t\right)}{E\h...
...ight)}{E\hspace*{1pt}I_{\omega}} f_{2}\left(t\right) = \mathcal{M}_{x}/{EI_{y}}$     (2.42)

Avaldame seosest (2.9) kooldejäikuse $ E\hspace*{1pt}I_{\omega}$:


$\displaystyle \frac{1}{E\hspace*{1pt}I_{\omega}} = \frac{1}{GI_{t}}{\kappa}^{2}, \qquad
{E\hspace*{1pt}I_{\omega}} = {GI_{t}}\frac{1}{\kappa^{2}}$     (2.43)

Nüüd saame koormusfunktsioonid $ f_{n}\left(t\right)$ esitada kujul
$\displaystyle f_{4}\left(t\right) = \hspace*{1pt}\frac{m_{x}\left(t\right)}{GI_...
...\frac{\mathit{M}_{x}\left(t\right)}{GI_{t}}{\kappa}^{2} <tex2html_comment_mark>$     (2.44)

Vaatleme juhtu, kui $ {m_{x}\left(t\right)} = const$. Erilahendi (2.39) saamiseks tuleb integreerida avaldis

$\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right) = \int_{x_{0}}^{x}K_{4}\...
...pt}} - {{\kappa \hspace*{1pt}\left(x - t\right) }\hspace*{1pt}}\right) dt \quad$     (2.45)

või
$\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right) = \int_{x_{0}}^{x}K_{4}\...
...pt}} - {{\kappa \hspace*{1pt}\left(x - t\right) }\hspace*{1pt}}\right) dt \quad$     (2.46)

Esmalt integreerime integraalide (2.45), (2.46) esimese liikme:
$\displaystyle \int^{x}_{a} \mathrm{sh}\hspace*{1pt} {{\kappa \hspace*{1pt}\left...
...athrm{ch}\hspace*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} -1 \right)$     (2.47)

kus $ \left(x -a \right)_{+}$ on Heaviside'i2.6 funktsioon
\begin{displaymath}\left(x -a \right)_{+} = \left\{
\begin{array}{ccc}
0, & kui ...
..., & kui & {\left( x -a \right) \geq 0}
\end{array}\right. \quad\end{displaymath}     (2.48)

Integraalide (2.45), (2.46) teise liikme integreerimisel saame
$\displaystyle \int^{x}_{a} {{\kappa \hspace*{1pt}\left(x - t\right) }\hspace*{1...
...^{x}_{a} = \hspace*{1pt}\kappa\hspace*{1pt}\frac{\left(x - a\right)^{2}_{+}}{2}$     (2.49)

Asetame leitud integraalid erilahenditesse (2.45), (2.46):
$\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{E\hspace*{1pt}I_{\omega}}\frac{1}{\kapp...
...space*{1pt}\kappa^{2}\hspace*{1pt} \frac{\left(x - a\right)^{2}_{+}}{2} \right]$ (2.50)
$\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{GI_{t}}\hspace*{1pt} \frac{1}{\kappa^{2...
...space*{1pt}\kappa^{2}\hspace*{1pt} \frac{\left(x - a\right)^{2}_{+}}{2} \right]$ (2.51)

Mittehomogeense diferentsiaalvõrrandi (2.37) teisele vabaliikmele ( $ {\mathit{M}_{x}}/{E\hspace*{1pt}I_{\omega}} = const$) vastava erilahendi saame avaldist (2.39) integreerides:

$\displaystyle {\theta}_{3\hspace*{1pt}e}\left(x\right) = \int_{x_{0}}^{x}K_{3}\...
...space*{1pt}\left(x - t\right) }\hspace*{1pt}} -1 \right)}\hspace*{1pt} dt \quad$     (2.52)

või
$\displaystyle {\theta}_{3\hspace*{1pt}e}\left(x\right) = \int_{x_{0}}^{x}K_{3}\...
...space*{1pt}\left(x - t\right) }\hspace*{1pt}} -1 \right)}\hspace*{1pt} dt \quad$     (2.53)

Integreerime integraalide (2.52), (2.53) esimese liikme:
$\displaystyle \int^{x}_{a} \mathrm{ch}\hspace*{1pt} {{\kappa \hspace*{1pt}\left...
... \mathrm{sh}\hspace*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right)$     (2.54)

Integraalide (2.52), (2.53) teise liikme integreerimisel saame
$\displaystyle \int^{x}_{a} {1\hspace*{1pt}} dt = \left. - \hspace*{1pt}\left(x - t\right)\right\vert^{x}_{a} = \hspace*{1pt}\left(x - a\right)_{+}$     (2.55)

Asetame leitud integraalid erilahendisse (2.52), (2.53):
$\displaystyle {\theta}_{3\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{\mathit{M}_{x}}{E\hspace*{1pt}I_{\omega}}\frac...
...ace*{1pt}} -
\hspace*{1pt}{{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.56)
$\displaystyle {\theta}_{3\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{\mathit{M}_{x}}{{G\hspace*{1pt}I_{t}}}\frac{1}...
...ace*{1pt}} -
\hspace*{1pt}{{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.57)

Lisame bimomendi $ B_{k} = M\hspace*{-2pt}\cdot\hspace*{-2pt}e$ erilahendi:

$\displaystyle {\theta}_{2\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{\mathit{B}_{k}}{E\hspace*{1pt}I_{\omega}}\frac...
...ce*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} - \hspace*{1pt}1 \right]$ (2.58)
$\displaystyle {\theta}_{2\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{\mathit{B}_{k}}{G\hspace*{1pt}I_{t}}
\left[ \h...
...ce*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} - \hspace*{1pt}1 \right]$ (2.59)

Lisame erilahendid $ n\hspace*{-2pt}\cdot\hspace*{-2pt}\omega$ jaoks:

$\displaystyle {\theta}^{\left(n\right)}_{3\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{-n\hspace*{-2pt}\cdot\hspace*{-2pt}\omega}{{G\...
...ace*{1pt}} -
\hspace*{1pt}{{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.60)
$\displaystyle {\theta}^{\left(N\right)}_{2\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{-N\hspace*{-2pt}\cdot\hspace*{-2pt}\omega}{G\h...
...ce*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} - \hspace*{1pt}1 \right]$ (2.61)
$\displaystyle {\theta}^{\left(M\right)}_{2\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{M\hspace*{-2pt}\cdot\hspace*{-2pt}\omega^{\pri...
...ce*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} - \hspace*{1pt}1 \right]$ (2.62)

Tabelis 1.1 esitatud koormuste jaoks on koostatud diferentsiaalvõrrandite erilahendite tabel 2.1.


Tabel 2.1. Erilahendid õhukeseseinalise varda väändel

Koormuse skeem Erilahendid
\includegraphics[width=29mm]{joonised/erilTblJoon1b.eps}
$ {\theta}^{\left(q\right)}_{4{\,}e}\left(x\right) = {\,}\mathlarger{\frac{m}{GI...
...{\,}\kappa^{2}{\,} \mathlarger{\frac{\left(x - a\right)^{2}_{+}}{2}} -1 \right]$
\includegraphics[width=29mm]{joonised/erilTblJoon2b.eps}
$ {\theta}^{\left(M\right)}_{3{\,}e}\left(x\right) = {\,}\mathlarger{\frac{\math...
...x - a\right)_{+}}{\,}} -
{\,}{\,}{{\kappa\left(x - a\right)_{+}}{\,}} \right]$
\includegraphics[width=29mm]{joonised/erilTblJoon3b.eps}
$ {\theta}^{\left(B\right)}_{2{\,}e}\left(x\right) = {\,}\mathlarger{\frac{\math...
...left[ {\,} \mathrm{ch}{\,} {{\kappa\left(x - a\right)_{+}}{\,}} - {\,}1 \right]$
\includegraphics[width=29mm]{joonised/erilTblJoon4b.eps}
$ {\theta}^{\left(n\right)}_{3{\,}e}\left(x\right) = {\,}\mathlarger{\frac{n\hsp...
... - a\right)_{+}}{\,}} -
{\,}{\,}{{\kappa\left(x - a\right)_{+}}{\,}} \right] $
\includegraphics[width=29mm]{joonised/erilTblJoon5b.eps}
$ {\theta}^{\left(N\right)}_{2{\,}e}\left(x\right) = {\,}\mathlarger{\frac{N\hsp...
...left[ {\,} \mathrm{ch}{\,} {{\kappa\left(x - a\right)_{+}}{\,}} - {\,}1 \right]$
\includegraphics[width=29mm]{joonised/erilTblJoon6b.eps}
$ {\theta}^{\left(M\right)}_{2{\,}e}\left(x\right) = {\,}\mathlarger{\frac{M\hsp...
...left[ {\,} \mathrm{ch}{\,} {{\kappa\left(x - a\right)_{+}}{\,}} - {\,}1 \right]$


Leiame erilahendi $ {\theta}_{4\hspace*{1pt}e}\left(x\right)$ tuletised:

$\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{GI_{t}}\hspace*{1pt} \frac{1}{\kappa^{2...
...ce*{1pt}\kappa^{2}\hspace*{1pt} \frac{\left(x - a\right)^{2}_{+}}{2} -1 \right]$ (2.63)
$\displaystyle {\theta}^{\prime}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{GI_{t}}\hspace*{1pt} \frac{1}{\kappa} \...
...ace*{1pt}} -
\hspace*{1pt}{{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.64)
$\displaystyle {\theta}^{\prime\prime}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{GI_{t}}\hspace*{1pt} \left[
\hspace*{1p...
...ce*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} -
\hspace*{1pt}1 \right]$ (2.65)
$\displaystyle {\theta}^{\prime\prime\prime}_{4\hspace*{1pt}e}\left(x\right)$ $\displaystyle =$ $\displaystyle \hspace*{1pt}\frac{m_{x}}{GI_{t}}\hspace*{1pt} {\kappa} \left[
\h...
... \mathrm{sh}\hspace*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.66)

andres
2016-04-11