2.2 Ülekandemaatriks takistatud väändel

Õhukeseseinalise varda takistatud väände ülekandemaatriksi koostamiseks teise märgikokkuleppe järgi vaatleme väändenurga tuletiste ja momentide vahelisi seoseid:
$\displaystyle {T_{t}}$ $\displaystyle =$ $\displaystyle \hspace*{10pt} GI_{t}\theta^{\prime} \hspace*{14pt}\hspace*{1pt} = E\hspace*{1pt}{I_{\omega}}{\kappa}^{2}\theta^{\prime}$ (2.67)
$\displaystyle {B_{\omega}}$ $\displaystyle =$ $\displaystyle -\hspace*{1pt}{GI_{t}}\frac{1}{\kappa^{2}}\theta^{\prime\prime}
= -\hspace*{1pt}E\hspace*{1pt}{I_{\omega}}\theta^{\prime\prime}$ (2.68)
$\displaystyle {T_{\omega}}$ $\displaystyle =$ $\displaystyle -\hspace*{1pt}{GI_{t}}\frac{1}{\kappa^{2}}\theta^{\prime\prime\prime}
= -\hspace*{1pt}E\hspace*{1pt}I_{\omega}\theta^{\prime\prime\prime}$ (2.69)

Väändenurga ja väändemomentide seosed saame algparameetritest, võttes väändenurgast tuletised (2.33)-(2.36) ja korrutades need vastava jäikusega (2.67)-(2.69).
$\displaystyle \theta$ $\displaystyle =$ $\displaystyle \hspace*{55pt} = \hspace*{1pt}{\theta}_{0} -\hspace*{1pt}{ \frac{...
...t}{{{\kappa x}}\hspace*{1pt}} -{{{\kappa x}}\hspace*{1pt}}\right) } \qquad\quad$ (2.70)
$\displaystyle T_{t}$ $\displaystyle =$ $\displaystyle \hspace*{1pt} GI_{t}\hspace*{1pt}{\theta}^{\prime} \hspace*{20pt}...
...*{1pt} \left( \mathrm{ch}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} -{1}\right) }$ (2.71)
$\displaystyle {B \hspace*{1pt}}$ $\displaystyle =$ $\displaystyle -\hspace*{1pt}{GI_{t}}\frac{1}{\kappa^{2}}\theta^{\prime\prime}\h...
...pace*{1pt}}\hspace*{1pt}} \mathrm{sh}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} }$ (2.72)
$\displaystyle {T_{\omega}}$ $\displaystyle =$ $\displaystyle -\hspace*{1pt}{GI_{t}}\frac{1}{\kappa^{2}}\theta^{\prime\prime\pr...
...{\omega}}}}{\hspace*{1pt} \mathrm{ch}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} }$ (2.73)

Esitame võrrandid (2.70)-(2.73) maatrikskujul

$\displaystyle \mathbf{Z_{L}\left( x\right) } = \mathbf{U}\cdot\mathbf{Z_{A}} <tex2html_comment_mark>$     (2.74)

kus $ \mathbf{Z_{L}}$, $ \mathbf{Z_{A}}$ on varda lõpus ja alguses olevad väändenurgad ning väändemomendid
$\displaystyle \mathbf{Z_{L}} =
\left[\begin{array}{c}
{\theta}_{L} \\
{T_{t}}_...
...left( 0\right)}_{\omega} \\
{T ^{\left( 0\right)}_{\omega}}
\end{array}\right]$     (2.75)

ja ülekandemaatriks $ \mathbf{U}$ teise märgikokkuleppe puhul


$\displaystyle \mathbf{U} =
\left[ \begin{array}{cccc}
1 & - { \frac{1}{GI_{t}}}...
...& -\mathrm{ch}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}}
\end{array}\right] \quad$     (2.76)



Alajaotised
andres
2016-04-11