2.2.1 Koormusvektor takistatud väändel

Koormusvektori $ \mathrm{\mathbf{\stackrel{\rm\circ}{Z}}}$ esitame kujul
$\displaystyle \mathbf{\stackrel{\rm\circ}{Z}} =
\left[\begin{array}{c}
\theta_{...
... \\
E\hspace*{1pt}I_{\omega}\theta^{\prime\prime\prime}_{e}
\end{array}\right]$     (2.77)

Koormusvektori leidmist alustame erilahendist (2.51):

$\displaystyle \theta_{e}$ $\displaystyle =$ $\displaystyle {\theta}_{4\hspace*{1pt}e}\left(x\right) = \hspace*{1pt}\frac{m_{...
...{1pt}\kappa^{2}\hspace*{1pt} \frac{\left(x - a\right)^{2}_{+}}{2} \right]
\quad$ (2.78)
$\displaystyle T_{t\hspace*{1pt}e}$ $\displaystyle =$ $\displaystyle {GI_{t}}{\theta}^{\prime}_{4\hspace*{1pt}e}\left(x\right) = \hspa...
...ace*{1pt}} -
\hspace*{1pt}{{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.79)
$\displaystyle B_{\omega\hspace*{1pt}e}$ $\displaystyle =$ $\displaystyle -{GI_{t}}\frac{1}{\kappa^{2}}{\theta}^{\prime\prime}_{4\hspace*{1...
...}\mathrm{ch}\hspace*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.80)
$\displaystyle {T_{\omega\hspace*{1pt}e}}$ $\displaystyle =$ $\displaystyle -{GI_{t}}\frac{1}{\kappa^{2}}{\theta}^{\prime\prime\prime}_{4\hsp...
... \mathrm{sh}\hspace*{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]$ (2.81)

Avaldistest (2.78)-(2.81) moodustame lausmomendi $ m_{x}$ koormusvektori
$\displaystyle \mathbf{\stackrel{\rm\circ}{Z}} =
\left[\begin{array}{c}
\theta_{...
...{1pt} {{\kappa\left(x - a\right)_{+}}\hspace*{1pt}} \right]}
\end{array}\right]$     (2.82)

andres
2016-04-11