2.1.4 Homogeenne diferentsiaalvõrrand

Homogeense diferentsiaalvõrrandi
$\displaystyle {\theta}^{IV} - \hspace*{1pt}{{\kappa}}^{2}{\theta}^{\prime\prime} = 0$     (2.23)

normeerimata lahendite süsteemi otsime järgmisel kujul:

$\displaystyle {\theta}_{1}^{\ast} = 1, \quad {\theta}_{2}^{\ast} = x, %
\quad {...
...ace*{1pt}\kappa x,
\quad {\theta}_{4}^{\ast} = \mathrm{sh}\hspace*{1pt}\kappa x$     (2.24)

kus $ {\kappa} = {\sqrt{\frac{GI_{t}}{E\hspace*{1pt}I_{\omega}}}}$.

Lahendite süsteemi (2.24) normeerimiseks kirjutame välja Wronski2.2 determinandi2.3:

$\displaystyle W\left(x\right) = {\left\vert\begin{array}{cccc}
1 & x & \mathrm{...
...}^{3}\hspace*{1pt}\mathrm{ch}\hspace*{1pt}{{\kappa x}}
\end{array}\right\vert }$     (2.25)

Wronski determinandi $ W$ väärtus kohal $ x = 0$:
$\displaystyle W\left(0\right) = \left\vert \begin{array}{cccc}
1 & 0 & 1 & 0 \v...
...appa}^{2} & 0 \vspace*{1pt} \\
0 & 0 & 0 & {\kappa}^{3}
\end{array}\right\vert$     (2.26)

Selleks et determinandi (2.26) väärtus oleks üks, teeme teisendused: Tulemuseks on ühikmaatriks
$\displaystyle W\left(0\right) = \left\vert \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\vert = 1$     (2.27)

Teeme sarnase teisenduse normeerimata lahendite süsteemiga (2.25): Saame normeeritud lahendite fundamentaalsüsteemi:

\begin{displaymath}\begin{array}{ll}
{\theta}_{1} = 1, & {\theta}_{2} = x, \vspa...
...\hspace*{1pt}} -{{{\kappa x}}\hspace*{1pt}}\right)}
\end{array}\end{displaymath}     (2.28)

Varda sisejõudude leidmisel kasutatakse rajajõudude (kontaktjõudude)

märgikokkulepet (jn 1.17). Esimese märgikokkuleppe puhul

$\displaystyle {\theta}_{0} = {\theta}_{0}, \quad {\theta}_{0}^{\prime} = { \fra...
...\prime} = - { \frac{{T ^{\left( 0\right)}_{\omega}}}{E\hspace*{1pt}I_{\omega}}}$     (2.29)

ja teise märgikokkuleppe korral

$\displaystyle {\theta}_{0} = {\theta}_{0}, \quad {\theta}_{0}^{\prime} = - { \f...
...me\prime} = { \frac{{T ^{\left( 0\right)}_{\omega}}}{E\hspace*{1pt}I_{\omega}}}$     (2.30)

Homogeense diferentsiaalvõrrandi üldlahend esimese märgikokkuleppe puhul on

$\displaystyle {\theta} = {\theta}_{0} +\hspace*{1pt}{ \frac{{T ^{\left( 0\right...
...pace*{1pt}{{\kappa x}\hspace*{1pt}} -{{{\kappa x}}\hspace*{1pt}}\right) } \quad$     (2.31)

ning teise märgikokkuleppe korral

$\displaystyle {\theta} = {\theta}_{0} -\hspace*{1pt}{ \frac{{T ^{\left( 0\right...
...pace*{1pt}{{\kappa x}\hspace*{1pt}} -{{{\kappa x}}\hspace*{1pt}}\right) } \quad$     (2.32)

Asendame avaldises (2.32) kooldejäikuse pöördväärtuse (1/ $ E\hspace*{1pt}I_{\omega}$) seosega (2.9) ( $ {1}/{E\hspace*{1pt}I_{\omega}} = {\kappa}^{2}/{GI_{t}}$).

$\displaystyle \theta \hspace*{1pt}$ $\displaystyle =$ $\displaystyle {\theta}_{0} - { \frac{{T ^{\left( 0\right)}_{x\hspace*{1pt}t}}}{...
...e*{1pt}{{{\kappa x}}\hspace*{1pt}} -{{{\kappa x}}\hspace*{1pt}}\right) }
\qquad$ (2.33)
$\displaystyle {\theta}^{\prime} \hspace*{1pt}$ $\displaystyle =$ $\displaystyle 0\hspace*{3pt} - \hspace*{1pt}{ \frac{{T ^{\left( 0\right)}_{x\hs...
...m{ch}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} -{{\kappa}\hspace*{1pt}}\right) }$ (2.34)
$\displaystyle {\theta}^{\prime\prime} \hspace*{1pt}$ $\displaystyle =$ $\displaystyle 0\hspace*{3pt} +\hspace*{8pt} 0\hspace*{18pt} + {\hspace*{1pt} \f...
...t}{{\kappa}\hspace*{1pt}} \mathrm{sh}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} }$ (2.35)
$\displaystyle {\theta}^{\prime\prime\prime}$ $\displaystyle =$ $\displaystyle 0\hspace*{3pt} +\hspace*{8pt} 0\hspace*{18pt} + {\hspace*{1pt} \f...
...\hspace*{1pt}{\kappa^{2}} \mathrm{ch}\hspace*{1pt}{{{\kappa x}}\hspace*{1pt}} }$ (2.36)

andres
2016-04-11