Problem Solving.
The two load cases shown in
Fig. 8.10 are applied:
We use the EST method described in Chapter 3, ``Statically indeterminate problems'', and carry out the following steps of calculations:
1. Input data for the GNU Octave program spESTframeSn1LaheWFI.m are given in excerpts from the program: element and nodal loads - excerpt 8.7; nodal coordinates - excerpt 8.8; element properties, topology and hinges - excerpt 8.9.
Number_of_frame_nodes=5 Number_of_elements=4 Number_of_support_reactions=5 spNNK=12*Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Displacements and forces are calculated on parts ''Nmitmeks'' of the element Nmitmeks=4 Lp=10.0; % graphic axis # ---- Load variants ----- load_variant=1; #load_variant=2; # --- Element properties ---
EIp=20000 # kN/m^2 EIr=40000 # kN/m^2 EAp=4.6*10^6 #EAp=4.6*10^15; EAr=6.8*10^6 #EAr=6.8*10^15; GAp=0.4*EAp GAr=0.4*EAr
baasi0=EIp/4 # scaling multiplier for displacements # baasi0=1.0; h=4.0; l=4.0; l1=l % l l2=l % l Mplr=30.0 # The plastic moment of beam Mplp=15.0 # The plastic moment of column # Loads F2s=0.5; F3s=1.0;
switch (koormusvariant) case{1} disp('--- ') disp(' Load variant 1 ') disp('--- ') # disp('deltaM0=15.0-AbsmaxminM ') # disp(' load myfile21.mat Flambda Flambda0 Flambda1 deltaM0 muutujaDaF2 ') disp('load myfile21.mat ') load myfile21.mat # Flambda Flambda0 Flambda1 deltaM0 muutujaDaF2 # # Element load in local coordinates # qz qx qA qL # Uniformly distributed load in local coordinate z and x directions Loadsq on element=4; esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,2)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,3)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,4)=[0.0 0.0 0.0 4.0];
# # Point load in local coordinate z and x directions kN # Fz, Fx, aF (coordinate of the point of force application) LoadsF on Element=5; esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 4.0]; esFjoud(1,1:3,2)=[0.0 0.0 4.0]; #esFjoud(2,1:3,2)=[0.0 0.0 4.0]; esFjoud(1,1:3,3)=[0.0 0.0 4.0]; esFjoud(1,1:3,4)=[0.0 0.0 4.0];
# # Node forces in global coordinates # sSolmF(forces,1,nodes); forces=[Fx; Fz; My] sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0; sSolmF(1,1,2)= F2s; # 0.5; sSolmF(2,1,3)= F3s; # 1.0; #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0
# #s1F(1,1,1)=0.0; # force Fz #s1F(2,1,1)=0.0; # force Fz #s1F(3,1,1)=0.0; # force My # Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
case{2} disp('--- ') disp(' Load variant 2 ') disp('--- ') disp(' load myfile10.mat ') load myfile10.mat disp(' plastF1F2; ')% #plastF1F2=[Flambda Flambda0 Flambda1 Flambda2 F2s01 F3s01] plastF1F2; Flambda=plastF1F2(1,1) Flambda0=plastF1F2(1,2) Flambda1=plastF1F2(1,3) Flambda2=plastF1F2(1,4) F2s01=plastF1F2(1,5) F3s01=plastF1F2(1,6)
# Element load in local coordinates # qz qx qA qL # Uniformly distributed load in local coordinate z and x directions Loadsq on element=4; esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,2)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,3)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,4)=[0.0 0.0 0.0 4.0];
# # Point load in local coordinate z and x directions kN # Fz, Fx, aF (coordinate of the point of force application) LoadsF on Element=5; esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 4.0]; esFjoud(1,1:3,2)=[0.0 0.0 4.0]; #esFjoud(2,1:3,2)=[0.0 0.0 4.0]; esFjoud(1,1:3,3)=[0.0 0.0 4.0]; esFjoud(1,1:3,4)=[0.0 0.0 4.0];
# # Node forces in global coordinates # sSolmF(forces,1,nodes); forces=[Fx; Fz; My] sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0; sSolmF(1,1,2)= F2s01; sSolmF(2,1,3)= F3s01; #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0
# #s1F(1,1,1)=0.0; # force Fz #s1F(2,1,1)=0.0; # force Fz #s1F(3,1,1)=0.0; # force My # Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
otherwise disp(' No load variant cases ') endswitch
#========== # Nodal coordinates #========== krdn=[# x z 0.0 0.0; % node 1 0.0 -4.0; % node 2 4.0 -4.0; % node 3 8.0 -4.0; % node 4 8.0 0.0]; % node 5 #========== # Restrictions on support displacements (on - 1, off - 0) # Support No u w fi #========== tsolm=[1 1 1 1; % node 1 5 1 1 0]; % node 5 #==========
# ------------- Element properties, topology and hinges --------- elasts=[# Element properties # n2 - end of the element # n1 - beginning of the element # N, Q, M - hinges at the end of the element # N, Q, M - hinges at the beginning of the element # Mpl - plastic moment at the end of the element # Mpl - plastic moment at the beginning # of the element EIp EAp GAp 2 1 0 0 0 0 0 0 0.0 0.0 ; % element 1 EIr EAr GAr 3 2 0 0 0 0 0 0 0.0 0.0 ; % element 2 EIr EAr GAr 4 3 0 0 1 0 0 0 -Mplp 0.0 ; % element 3 EIp EAp GAp 5 4 0 0 1 0 0 1 Mplp Mplp ]; % element 4 # 1 - hinge 'true' (axial, shear, moment hinges) #
2. Assembling and solving the boundary problem equations (8.3), carried out by the function
LaheFrameSnDFIm(baasi0,Ntoerkts,esQkoormus,esFjoud,sSolmF,tsolm,tSiire, krdn,selem).
This function gives the unscaled initial parameter vectors of the elements and support reactions according to the load cases.
3. Output data.
Load case 1. The load factor
(Flambda), forces
(F3s01) and
(F2s01) are presented in excerpt 8.9 from the computing diary.
deltaM0 = 2.3077 -------------- absX = 2.2727 Flambda2=deltaM0/absX Flambda2 = 1.0154 Flambda=Flambda0+Flambda1+Flambda2 Flambda = 18.900 -------------- F2s01=Flambda*F2s F2s01 = 9.4500 F3s01=Flambda*F3s F3s01 = 18.900 ============== plastF1F2=[Flambda Flambda0 Flambda1 Flambda2 F2s01 F3s01] plastF1F2 = 18.9000 14.6853 3.1993 1.0154 9.4500 18.9000 save myfile10.mat plastF1F2
The bending moments of the first loading case are given in excerpt 8.2 from the computing diary, and the bending moments diagram is shown in Fig. 8.3(a).
Moments at nodes (Sign Convention 2) ============================================================== Node Moment DaF No Fi/baasi0 DaF No Work_b Element -------------------------------------------------------------- 1 1.45455 12 0.00000e+00 9 0.00000e+00 1 2 0.54545 6 -9.09091e-05 3 -4.95868e-05 1 2 -0.54545 24 -9.09091e-05 21 4.95868e-05 2 3 2.27273 18 3.03030e-06 15 6.88705e-06 2 3 -2.27273 36 3.03030e-06 33 -6.88705e-06 3 4 0.00000 30 7.87879e-05 27 0.00000e+00 3 4 0.00000 48 -7.87879e-05 45 -0.00000e+00 4 5 0.00000 42 -7.87879e-05 39 -0.00000e+00 4 --------------------------------------------------------------
Load case 2.
The bending moments of the second loading case are given in excerpt 8.12 from the computing diary, and
the bending moments diagram is shown in Fig. 8.4(b).
We find that the next node for a full plastic moment
to form at is node 1 (DaF = 12, see excerpt 8.11 from the computing diary, Figs. 8.8 and 8.4(b)).
At this node,
(deltaM0)
is needed to add as shown in excerpt 8.11 and Fig. 8.4(a).
The maximum absolute values of reduced moments AbsmaxminM = 8.4000 muutujaDaF3 = 12 AbsmaxminM = 8.4000 Flambda = 18.900 Flambda0 = 14.685 Flambda1 = 3.1993 Flambda2 = 1.0154 deltaM0 = 6.6000 muutujaDaF3 = 12 save myfile11.mat Flambda Flambda0 Flambda1 Flambda2 deltaM0 muutujaDaF3
Moments at nodes (Sign Convention 2) ============================================================== Node Moment DaF No Fi/baasi0 DaF No Work_b Element -------------------------------------------------------------- 1 8.40000 12 0.00000e+00 9 0.00000e+00 1 2 -0.60000 6 -9.00000e-04 3 5.40000e-04 1 2 0.60000 24 -9.00000e-04 21 -5.40000e-04 2 3 30.00000 18 8.00000e-05 15 2.40000e-03 2 3 -30.00000 36 8.00000e-05 33 -2.40000e-03 3 4 -15.00000 30 5.80000e-04 27 -8.70000e-03 3 4 15.00000 48 -8.00000e-05 45 -1.20000e-03 4 5 15.00000 42 -8.00000e-05 39 -1.20000e-03 4 -------------------------------------------------------------- At node 4, the dissipation D = -(-8.70000e-03 -1.20000e-03) = 0.00990 > 0 At node 5, the dissipation D = -(-1.20000e-03) = 0.00120 > 0
andres