8.1.1 The n=3 times statically indeterminate frame

Example 8.2   Problem Statement. Consider the frame shown in Fig. 8.1 and described in Example 8.1. Our aim is to compute the load factor $\lambda $ (see Fig. 8.7(b)) at which the first plastic moment occurs.

Figure 8.7: Load cases of the n = 3 times indeterminate frame ESTsn3
\includegraphics[width=74mm]{joonised/raamPiirk2eSn.eps}
           [$F_{1} = 1{\,}\mathrm{kN}, F_{2} = 0.5{\,}\mathrm{kN}$]
               \includegraphics[width=74mm]{joonised/raamPiirk3eSn.eps}
           [ $F_{1} = 14.685{\,}\mathrm{kN}, F_{2} = 7.3427{\,}\mathrm{kN}$]

Problem Solving. Now we apply the two load cases shown in Fig. 8.7.

We use the EST method described in Chapter 3, ``Statically indeterminate problems'', and carry out the following steps of calculations:

  1. Data input: the number of frame nodes, elements, support reactions; element properties, element loads in local coordinates, node forces in global coordinates, nodal coordinates, topology and hinges, side conditions, restrictions on support displacements.

    $\displaystyle \mathbf{spA}{\cdot}\mathbf{Z} = \mathbf{B}
\vspace*{-6pt}$     (8.1)

  2. Assembling and solving the boundary problem equation (8.1) (prepared and solved by the function LaheFrameSnDFIm.m):
    1. writing the basic equations of a frame in transfer matrix form,
    2. adding the compatibility equations of the displacements at nodes,
    3. adding the joint equilibrium equations,
    4. adding the side conditions (moment hinges),
    5. adding the restrictions on support displacements,
    6. solving the system of sparse equations,
    7. producing an output: initial parameter vectors for element displacements and forces; support reactions.
  3. Output: element displacements and forces determined by the transfer matrix.

1. Input data for the GNU Octave program spESTframeSn3LaheWFI.m are given in excerpts from the program: element and nodal loads - excerpt 8.1; nodal coordinates - excerpt 8.2; element properties, topology and hinges - excerpt 8.3.

Program excerpt 8.1 ( spESTframeSn3LaheWFI.m )  
 Number_of_frame_nodes=5
 Number_of_elements=4
 Number_of_support_reactions=6
 spNNK=12*Number_of_elements+Number_of_support_reactions;
 Number_of_unknowns=spNNK 
 Displacements and forces are calculated on parts ''Nmitmeks'' of the element 
 Nmitmeks=4
 Lp=10.0; % graphic axis
# ---- Load variants ----- 
load_variant=1;
#load_variant=2;
# --- Element properties ---
  
 EIp=20000 # kN/m^2
 EIr=40000 # kN/m^2
 EAp=4.6*10^6 
#EAp=4.6*10^15; 
 EAr=6.8*10^6
#EAr=6.8*10^15; 
 GAp=0.4*EAp 
 GAr=0.4*EAr
  
 baasi0=EIp/4  # scaling multiplier for displacements 
# baasi0=1.0;
h=4.0;
l=4.0;
l1=l   % l
l2=l   % l
Mplr=30.0 # The plastic moment of beam
Mplp=15.0 # The plastic moment of column
# Loads
F2s=0.5;
F3s=1.0;
switch (koormusvariant)
case{1}
disp('---  ')
disp(' Load variant 1 ')
disp('---  ')
#
# Element load  in local coordinates 
#  qz     qx     qA      qL 
# Uniformly distributed load in local coordinate z and x directions
Loadsq on element=4;
esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,2)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,3)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,4)=[0.0 0.0 0.0 4.0];
 
#
# Point load in local coordinate z and x directions  kN
#  Fz, Fx, aF (coordinate of the point of force application)
LoadsF on Element=5; 
esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 4.0];
esFjoud(1,1:3,2)=[0.0 0.0 4.0]; 
#esFjoud(2,1:3,2)=[0.0 0.0 4.0];
esFjoud(1,1:3,3)=[0.0 0.0 4.0]; 
esFjoud(1,1:3,4)=[0.0 0.0 4.0];
 
#
# Node forces in global coordinates
# sSolmF(forces,1,nodes); forces=[Fx; Fz; My]
sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0;
sSolmF(1,1,2)= F2s; # 0.5;
sSolmF(2,1,3)= F3s; # 1.0;
#sSolmF(:,1,4)= 0.0
#sSolmF(:,1,5)= 0.0
 
#
#s1F(1,1,1)=0.0;  # force Fz
#s1F(2,1,1)=0.0;  # force Fz
#s1F(3,1,1)=0.0;  # force My


# Support shift - tSiire
# Support shift is multiplied by scaling multiplier
tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0
#tSiire(2,1,1)= 0.01*baasi0
#tSiire(:,1,2)= 0.0
#tSiire(:,1,3)= 0.0
#tSiire(:,1,4)= 0.0
#tSiire(:,1,5)= 0.0
case{2}
disp('---  ')
disp(' Load variant 2 ')
disp('---  ')
load myfile30.mat 
plastF1F2;
Flambda0=plastF1F2(1,1);
F2s03=plastF1F2(1,2)
F3s03=plastF1F2(1,3)
# Element load  in local coordinates 
#  qz     qx     qA      qL 
# Uniformly distributed load in local coordinate z and x directions
Loadsq on element=4;
esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,2)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,3)=[0.0 0.0 0.0 4.0];
esQkoormus(1,1:4,4)=[0.0 0.0 0.0 4.0];
 
#
# Point load in local coordinate z and x directions  kN
#  Fz, Fx, aF (coordinate of the point of force application)
LoadsF on Element=5; 
esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 4.0];
esFjoud(1,1:3,2)=[0.0 0.0 4.0]; 
#esFjoud(2,1:3,2)=[0.0 0.0 4.0];
esFjoud(1,1:3,3)=[0.0 0.0 4.0]; 
esFjoud(1,1:3,4)=[0.0 0.0 4.0];
 
#
# Node forces in global coordinates
# sSolmF(forces,1,nodes); forces=[Fx; Fz; My]
sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0;
sSolmF(1,1,2)= F2s03;
sSolmF(2,1,3)= F3s03;
#sSolmF(:,1,4)= 0.0
#sSolmF(:,1,5)= 0.0
 
#
#s1F(1,1,1)=0.0;  # force Fz
#s1F(2,1,1)=0.0;  # force Fz
#s1F(3,1,1)=0.0;  # force My

# Support shift - tSiire#
# Support shift is multiplied by scaling multiplier
tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0
#tSiire(2,1,1)= 0.01*baasi0
#tSiire(:,1,2)= 0.0
#tSiire(:,1,3)= 0.0
#tSiire(:,1,4)= 0.0
#tSiire(:,1,5)= 0.0
otherwise
disp(' No load variant cases ')
endswitch

Program excerpt 8.2 ( spESTframeSn3LaheWFI.m )  
#==========
#     Nodal coordinates
#==========
krdn=[#  x       z
        0.0     0.0;    % node 1
        0.0    -4.0;    % node 2
        4.0    -4.0;    % node 3
        8.0    -4.0;    % node 4
        8.0     0.0];   % node 5
#========== 

#==========
#  Restrictions on support displacements (on - 1, off - 0)
# Support  No   u   w  fi  
#==========       
tsolm=[1       1 1 1;	% node 1
       5       1 1 1];	% node 5       
#==========

Program excerpt 8.3 ( spESTframeSn3LaheWFI.m )  
# ------------- Element properties, topology and hinges ---------
elasts=[# Element properties 
#            n2 - end of the element 
#                  n1 - beginning of the element
#                       N, Q, M - hinges at the end of the element
#                                N, Q, M - hinges at the beginning of the element 
#                                      Mpl - plastic moment at the end of the element
#                                               Mpl - plastic moment at the beginning
#                                                                      of the element 
 EIp EAp GAp   2     1    0 0 0    0 0 0   0.0  0.0 ;    % element 1
 EIr EAr GAr   3     2    0 0 0    0 0 0   0.0  0.0 ;    % element 2
 EIr EAr GAr   4     3    0 0 0    0 0 0   0.0  0.0 ;    % element 3
 EIp EAp GAp   5     4    0 0 0    0 0 0   0.0  0.0 ];   % element 4
# 1 - hinge 'true' (axial, shear, moment hinges)
#

2. Assembling and solving the boundary problem equations (8.1), carried out by the function LaheFrameSnDFIm(baasi0,Ntoerkts,esQkoormus,esFjoud,sSolmF,tsolm,tSiire, krdn,selem). This function gives the unscaled initial parameter vectors of the elements and support reactions according to the load cases.

3. Output data.

Load case 1. The load factor $\lambda = \lambda_{0}$ (Flambda0), forces $F_{1}$ (F3s03) and $F_{2}$ (F2s03) are given in excerpt 8.1 from the computing diary.

Computing diary excerpt 8.1 ( spESTframeSn3LaheWFI.m )  
Flambda0=15/AbsmaxminM 
Flambda0 =  14.685
-------------- 
F2s =  0.50000
F2s03=Flambda0*F2s 
F2s03 =  7.3427
--- 
F3s =  1
F3s03=Flambda0*F3s 
F3s03 =  14.685
==============  
plastF1F2=[Flambda0 F2s03 F3s03] 
plastF1F2 =

   14.6853    7.3427   14.6853

  save myfile30.mat plastF1F2

The bending moments of the first loading case are given in excerpt 8.2 from the computing diary, and the bending moments diagram is shown in Fig. 8.2(a).

Computing diary excerpt 8.2 ( spESTframeSn3LaheWFI.m )  
 
 
Moments at nodes (Sign Convention 2) 
============================================================== 
 Node    Moment DaF No  Fi/baasi0  DaF No   Work_b    Element  
-------------------------------------------------------------- 
   1    0.26429   12   0.00000e+00    9   0.00000e+00    1
   2   -0.12143    6  -3.85714e-05    3   4.68367e-06    1
   2    0.12143   24  -3.85714e-05   21  -4.68367e-06    2
   3    1.42857   18   5.00000e-06   15   7.14286e-06    2
   3   -1.42857   36   5.00000e-06   33  -7.14286e-06    3
   4   -1.02143   30   1.85714e-05   27  -1.89694e-05    3
   4    1.02143   48   1.85714e-05   45   1.89694e-05    4
   5    0.83571   42   0.00000e+00   39   0.00000e+00    4
-------------------------------------------------------------- 
 Note. Work_b is done by boundary forces of an element

Load case 2. The bending moments of the second loading case are given in excerpt 8.4 of the computing diary. The bending moments diagram is shown in Fig. 8.2(b). We find that the next node at which a full plastic moment $M_{pl} = 15.0{\,}\mathrm{kN}\hspace*{-2pt}\cdot\hspace*{-2pt}\mathrm{m}$ will appear is node 5 (DaF = 42, see computing diary excerpt 8.3, Figs. 8.8 and 8.2(b)). At this node, $\Delta M_{5} = 15 - 12.2727=$ $ 2.7273{\,}\mathrm{kN}\hspace*{-2pt}\cdot\hspace*{-2pt}\mathrm{m}$ (deltaM0) is to be added as shown in excerpt 8.3 and Fig. 8.3(a).

Figure 8.8: Numeration of displacements and forces of the frame ESTsn3
\includegraphics[width=115mm]{joonised/raamPiirk1DaFe.eps}

Computing diary excerpt 8.3 ( spESTframeSn3LaheWFI.m )  
The maximum absolute values of reduced moments
AbsmaxminM =  12.273
muutujaDaF1 = 42
deltaM0=15.0-AbsmaxminM 
deltaM0 =  2.7273
Flambda0 =  14.685
deltaM0 =  2.7273
muutujaDaF1 = 42
save myfile31.mat Flambda0 deltaM0 muutujaDaF1

Computing diary excerpt 8.4 ( spESTframeSn3LaheWFI.m )  
Moments at nodes (Sign Convention 2) 
============================================================== 
 Node    Moment DaF No  Fi/baasi0  DaF No   Work_b    Element  
-------------------------------------------------------------- 
   1    3.88112   12   0.00000e+00    9   0.00000e+00    1
   2   -1.78322    6  -5.66434e-04    3   1.01007e-03    1
   2    1.78322   24  -5.66434e-04   21  -1.01007e-03    2
   3   20.97902   18   7.34266e-05   15   1.54042e-03    2
   3  -20.97902   36   7.34266e-05   33  -1.54042e-03    3
   4  -15.00000   30   2.72727e-04   27  -4.09091e-03    3
   4   15.00000   48   2.72727e-04   45   4.09091e-03    4
   5   12.27273   42   0.00000e+00   39   0.00000e+00    4
--------------------------------------------------------------


andres
2014-09-09