5.3.4 Transformation of a transfer matrix

Let $X$, $Z$ be the global coordinate system (see Fig. 5.5), $x$, $z$ the local (initial) coordinate system, and $\xi$, $\eta$ the current coordinate system [Yaw09].

We have derived the transfer matrix $\mathbf{U_{x}}$ from Eq. (5.90) for the normal force N and shear force $Q$ shown in Fig. 5.1. These forces (N, $Q$) we bind with the current coordinate system ($\xi$, $\eta$).

Figure 5.5: Axial and normal forces
\includegraphics[width=85mm]{joonised/survese.eps}


The axial force $S$ and transverse shear force $H$ are described in the initial (local) coordinate system ($x$, $z$). In the global coordinate system ($X$, $Z$), the joint equilibrium equations are written.

We now consider a symbolic matrix transfer equation at the axial force S and Sign Convention 2:

$\displaystyle \mathbf{Z_{x}^{S}} = \mathbf{U^{S}_{x}\cdot Z_{0}^{S}} + \mathbf{{\stackrel{\rm\circ}{Z}}}{ }^{S\pm 2}$     (5.96)

where
$\displaystyle \mathbf{Z_{x}^{S}} = \left[ \begin{array}{c}
u \\
w \\
\varphi_...
...
w \\
\varphi_{y} \\
S_{x} \\
H_{z} \\
M_{y}
\end{array} \right]_{0}
\quad$     (5.97)

From Eq. (5.4)
$\displaystyle N$ $\textstyle +$ $\displaystyle \underbrace{Q\varphi}_{{\ll} N} = S_{x} {\cong} N$  
$\displaystyle N$ $\textstyle =$ $\displaystyle \mp \left\vert S\right\vert = \mp {\nu}^{2}\frac{EI}{l^{2}}, \ens...
...hen \enspace compression \\
+\enspace then \enspace tension
\end{array}\right.$ (5.98)

and the relationship between the forces referred to a deformed and undeformed axis can be rewritten [Krä91b] in the form of Eq. (5.4):

$\displaystyle \left[
\begin{array}{c}
H
\end{array}\right] =
\left[
\begin{arra...
...nspace compression \\
-\enspace then \enspace tension
\end{array}\right. \quad$     (5.99)

Due to the orthogonality of Eq. (A.27), we can write from the inverse of the matrix of Eq. (5.4)

$\displaystyle \left[
\begin{array}{c}
Q
\end{array}\right] =
\left[
\begin{arra...
...nspace compression \\
+\enspace then \enspace tension
\end{array}\right. \quad$     (5.100)

In order to change variables $N$, $Q$ to $S$, $H$, we will need the transformation relations of Eq. (5.101) [Krä91b]:

$\displaystyle \underbrace{\left[ \begin{array}{c}
u \\
w \\
\varphi_{y} \\
S...
...nspace compression \\
-\enspace then \enspace tension
\end{array}\right. \quad$     (5.101)

or
$\displaystyle \mathbf{{Z}^{S}} = \mathbf{{T}^{SN}}\mathbf{Z^{N}}$     (5.102)

To compute the transformation matrix $\mathbf{{T}^{SN}}$, the GNU Octave function ytransf.m (p. [*]) can be used.

We will make the inverse change of variables $S$, $H$ to $N$, $Q$ with the equations

$\displaystyle \underbrace{\left[ \begin{array}{c}
u \\
w \\
\varphi_{y} \\
N...
...nspace compression \\
+\enspace then \enspace tension
\end{array}\right. \quad$     (5.103)

or
$\displaystyle {\mathbf{{Z}^{N}}} = {\mathbf{{T}^{NS}}}{\mathbf{{Z}^{S}}}$     (5.104)

Here, the transformation matrix $\mathbf{{T}^{NS}}$ can be computed using the GNU Octave function ytransfp.m (p. [*]).

The matrix ${\mathbf{{Z}^{N}}}$ has the inverse matrix ${\mathbf{{Z}^{S}}}$, i.e

$\displaystyle \mathbf{{Z}^{N}}\cdot \mathbf{{Z}^{S}} = I, \qquad \mathbf{{Z}^{S}}\cdot \mathbf{{Z}^{N}} = I$     (5.105)

We rewrite Eq. (5.90) in the form
$\displaystyle \mathbf{Z^{N}_{x}} = \mathbf{U^{N\pm 2}_{x}}\cdot \underbrace{{\m...
...{S}_{0}}}}_{\mathbf{{Z}^{N}_{0}}} + \mathbf{\stackrel{\rm\circ}{Z}}{ }^{N\pm 2}$     (5.106)

and multiply Eq. (5.106) from left by $\mathbf{{T}^{SN}}$:
$\displaystyle \underbrace{\mathbf{{T}^{SN}} \cdot\mathbf{Z^{N}_{x}}}_{\mathbf{{...
...krel{\rm\circ}{Z}}{ }^{N\pm 2}}_{\mathbf{{\stackrel{\rm\circ}{Z}}}{ }^{S\pm 2}}$     (5.107)

When comparing equations (5.96) and (5.107), we show that

$\displaystyle {\mathbf{U^{S\pm 2}_{x}}} = \mathbf{{T}^{SN}} \cdot\mathbf{U^{N\pm 2}_{x}}\cdot {\mathbf{{T}^{NS}}}$     (5.108)

and
$\displaystyle {\mathbf{{\stackrel{\rm\circ}{Z}}}{ }^{S\pm 2}} = \mathbf{{T}^{SN}} \cdot\mathbf{\stackrel{\rm\circ}{Z}}{ }^{N\pm 2}$     (5.109)

where ${\mathbf{U^{S-2}_{x}}} =$
$\displaystyle = \left[ \begin{array}{cccccc}
1 & 0 & 0 & -\frac{x}{EA} & 0 & 0 ...
...t) \frac{l}{\nu} & - \cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$     (5.110)

and ${\mathbf{U^{S+2}_{x}}} =$
$\displaystyle = \left[ \begin{array}{cccccc}
1 & 0 & 0 & -\frac{x}{EA} & 0 & 0 ...
...{l}{\nu} & - \mathrm{ch} \left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$     (5.111)

The transfer matrices (for the axial and transverse shear forces $S$, $H$; Sign Convention 2) $\mathbf{U^{S-2}_{x}}$ of Eq. (5.110) and $\mathbf{U^{S+2}_{x}}$ of Eq. (5.111) can be computed using the GNU Octave function ylfmhvII.m , taking the input argument $baasi0$ equal to 1.0 ($baasi0$ is input for scaling multiplier $i_{0}= EI/l$, see p. [*]).

If we multiply the loading vectors of Eqs. (5.92) and (5.93) (for the normal and shear forces $N$, $Q$) from left by $\mathbf{{T}^{SN}}$ (see Eq. (5.109)), we get the products of Eqs. (5.112) and (5.113) (for the axial and transverse shear forces $S$, $H$):

$\displaystyle \mathbf{\stackrel{\rm\circ}{{Z}}}{}^{S-2} =
\left[\begin{array}{c...
...- x_{0}\right)}{l} \right) - 1 \right]\frac{ql^{2}}{\nu^{2}}
\end{array}\right]$     (5.112)


$\displaystyle \mathbf{\stackrel{\rm\circ}{{Z}}}{}^{S+2} =
\left[\begin{array}{c...
...( x - x_{0}\right)}{l} \right) \right]\frac{ql^{2}}{\nu^{2}}
\end{array}\right]$     (5.113)

The loading vectors of Eqs. (5.112) and (5.113) can be computed using the GNU Octave function ylqvII.m , taking the input argument $baasi0$ equal to 1.0 ($baasi0$ is input for the scaling multiplier $i_{0}= EI/l$, see p. [*]).

Multiplying the loading vectors of Eqs. (5.94) and (5.95) (for the normal and shear forces $N$, $Q$) from left by $\mathbf{{T}^{SN}}$ (see Eq. (5.109)), we get the products of Eqs. (5.114) and (5.115) (for the axial and transverse shear forces $S$, $H$):

$\displaystyle \mathbf{\stackrel{\rm\circ}{{Z}}}{}^{S-2} =
\left[\begin{array}{c...
...frac{\left(x - x_{0}\right)}{l}\right) \right]\frac{Fl}{\nu}
\end{array}\right]$     (5.114)


$\displaystyle \mathbf{\stackrel{\rm\circ}{{Z}}}{}^{S+2} =
\left[\begin{array}{c...
...frac{\left(x - x_{0}\right)}{l}\right) \right]\frac{Fl}{\nu}
\end{array}\right]$     (5.115)

The loading vectors of Eqs. (5.114) and (5.115) can be computed using the GNU Octave function ylfhvzII.m (p. [*]) , taking the input argument $baasi0$ equal to 1.0 ($baasi0$ is input for the scaling multiplier $i_{0}= EI/l$, see p. [*]).


andres
2014-09-09