1.2.2 Basic equations for a frame element

The governing differential equation for a truss element is

$\displaystyle \frac{\mathrm{d}N_{x}}{\mathrm{d}x} = - q_{x}\left(x\right)$     (1.41)

or
$\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(EA\frac{\mathrm{d}u}{\mathrm{d}x}\right) = - q_{x}\left(x\right)$     (1.42)

where $N_{x} = EA{\mathrm{d}u}/{\mathrm{d}x}$ and EA denotes the axial stiffness.

We now consider the basic equations of a frame element in symbolic matrix notation

$\displaystyle {\mathbf{Z_{x}}} = {\mathbf{U_{x}}}{\mathbf{Z_{A}}} + {\mathbf{\stackrel{\rm\circ}{Z}}}$     (1.43)
where $\mathbf{Z_{x}}$, $\mathbf{Z_{A}}$ are the vectors of displacements and forces at the point with x-coordinate and at the beginning of the element, respectively,

$\displaystyle \mathbf{Z_{x}} =
\left[\begin{array}{c}
u_{x} \\
w_{x} \\
\varp...
...{A} \\
\varphi_{A} \\
\ldots \\
N_{A} \\
Q_{A} \\
M_{A}
\end{array}\right]$     (1.44)

and $\mathbf{U_{x}}$ is the transfer matrix (Sign Convention 2):
$\displaystyle \mathbf{U_{x}} = {\large {\left[ \begin{array}{ccccccc}
1 & 0 & 0...
...\\
0 & 0 & 0 & \vdots & 0 & - x & -1
\end{array} \right] }}
\quad
\normalfont $     (1.45)

where $i_{0}=1$ is the scaling multiplier for the displacements ($i_{0}= EI/l$) and the loading vector (yzhqz.m, yzfzv.m, yzmyv.m) can be expressed as

$\displaystyle \mathbf{\stackrel{\rm\circ}{Z}} =
{\large { \left[ \begin{array}{...
...M_{y} \left( x - x_{a}\right)^{0}_{+}
\end{array} \right] }}
\quad
\normalfont $     (1.46)

Some other loading vectors are to be found in Tables C.1 and C.2 of Appendix C.

andres
2014-09-09