1.2.1 The Euler-Bernoulli beam equation

Given below are the Euler-Bernoulli beam governing differential equations:

Figure 1.9: A differential frame element
\includegraphics[width=50mm]{joonised/VardaDiff.eps}


$\displaystyle \frac{\mathrm{d}w}{\mathrm{d}x}$ $\displaystyle - \varphi_{y}$  
$\displaystyle \frac{\mathrm{d^{2}}w}{\mathrm{dx^{2}}}$ $\displaystyle -\frac{\mathrm{d}\varphi_{y}}{\mathrm{dx}} = - \frac{1}{EI_{y}}M_{y}$ (1.14)
$\displaystyle \frac{\mathrm{d^{3}}w}{\mathrm{dx^{3}}}$ $\displaystyle - \frac{1}{EI_{y}} \frac{\mathrm{d}M_{y}}{\mathrm{d}x} = - \frac{1}{EI_{y}} Q_{z} \qquad\qquad\qquad$  
$\displaystyle \frac{\mathrm{d^{4}}w}{\mathrm{dx^{4}}}$ $\displaystyle - \frac{1}{EI_{y}}\frac{\mathrm{d}Q_{z}}{\mathrm{d}x} = \frac{1}{EI_{y}}q_{z}$  

where ${E}$ is the elastic modulus and ${I_{y}}$ is the area moment of inertia.

The last formula of Eq. (1.14) is a non-homogeneous differential equation of 4th order ( ${\mathrm{d^{4}}w}/{\mathrm{dx^{4}}} = {q_{z}}/{EI_{y}}$). We are looking for the general solution of the non-homogeneous differential equation in the form

$\displaystyle w = w_{0}w_{1} + w_{0}^{\prime}w_{2} + w_{0}^{\prime\prime}w_{3} +
w_{0}^{\prime\prime\prime}w_{4} + w_{e}\left(x\right)$     (1.15)
where
$w_{0},\enspace w_{0}^{\prime}, \enspace w_{0}^{\prime\prime}$, and $w_{0}^{\prime\prime\prime}$ are the values of the sought-for function at $x = x_{0}$;
$w_{1}, \enspace w_{2}, \enspace w_{3},\enspace and \enspace w_{4}$ are a normed fundamental set of solutions to the associated homogeneous differential equation;
$w_{e}\left(x\right)$ is the particular solution of the non-homogeneous differential equation.

Next we consider a set for fundamental solutions for the associated homogeneous differential equation:

$\displaystyle w_{1} = 1, \quad w_{2} = x,
\quad w_{3} = \frac{x^{2}}{2}, \quad
\quad w_{4} = \frac{x^{3}}{6}$     (1.16)

The Wronskian1.1 $W$ of this set of solutions

$\displaystyle W\left(x\right) = \left\vert \begin{array}{cccc}
1 & x & {x^{2}}/...
... & {x} & {x^{2}}/{2} \\
0 & 0 & 1 & x \\
0 & 0 & 0 & 1
\end{array}\right\vert$     (1.17)
and at $x = 0$
$\displaystyle W\left(x=0\right) = \left\vert \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\vert = 1$     (1.18)

Thus, the last equation is unit Wronskian and the set of fundamental solutions of Eq. (1.16) is a normed fundamental set of solutions.

By Sign Convention 1, the initial parameters of Eq. (1.15) are

$\displaystyle w_{0} = w_{0}, \enspace w_{0}^{\prime} = - \varphi_{0}, \enspace
...
... = - \frac{M_{0}}{EI}, \enspace
w_{0}^{\prime\prime\prime} = - \frac{Q_{0}}{EI}$     (1.19)

and by Sign Convention 2

$\displaystyle w_{0} = w_{0}, \enspace w_{0}^{\prime} = - \varphi_{0}, \enspace
...
...ime} = \frac{M_{0}}{EI}, \enspace
w_{0}^{\prime\prime\prime} = \frac{Q_{0}}{EI}$     (1.20)

Substituting Eqs. (1.16) and (1.19) into Eq. (1.15), we get the solution for the homogeneous differential equation (Sign Convention 1):

$\displaystyle w =
\left[\begin{array}{cccc}
1 & - x & - {x^{2}}/{2EI} & -{x^{3}...
...t[\begin{array}{c}
w_{0} \\
\varphi_{0} \\
M_{0} \\
Q_{0}
\end{array}\right]$     (1.21)

From Eqs. (1.16) and (1.20) (Sign Convention 2),

$\displaystyle w =
\left[\begin{array}{cccc}
1 & - x & {x^{2}}/{2EI} & {x^{3}}/{...
...t[\begin{array}{c}
w_{0} \\
\varphi_{0} \\
M_{0} \\
Q_{0}
\end{array}\right]$     (1.22)

The general non-homogeneous differential equation of the Euler-Bernoulli beam subjected to an external load and equivalent generalized loads is

$\displaystyle \mathrm{d^{4}}{w}/{\mathrm{dx^{4}}} = {q_{z}}/{EI_{y}} + \mathcal...
...a\right)/{EI_{y}} + \mathcal{M}_{x}{\delta}^{\prime}\left(t - a\right)/{EI_{y}}$     (1.23)
where
$\mathcal{F}_{z}{\delta}\left(x - a_{F}\right)/{EI_{y}}$ is the equivalent distributed force $q_{F}$ of a concentrated force of magnitude $\mathcal{F}_{z}$,
$\mathcal{M}_{x}{\delta}^{\prime}\left(x - a_{M}\right)/{EI_{y}}$ is the equivalent distributed force $q_{M}$ of a concentrated moment of magnitude $\mathcal{M}_{x}$,
${\delta}\left(x - a\right)$ is the Dirac delta function.

The particular solution of Eq. (1.15) we are looking for is given by the Cauchy formula

$\displaystyle w_{e}\left(x\right) = \int_{x_{0}}^{x}K\left(x,t\right)f\left(t\right)dt$     (1.24)
or, to be more precise,

$\displaystyle w_{e}\left(x\right) = \int_{x_{0}}^{x}K_{4}\left(x,t\right)f_{4}\...
...3}\left(t\right)dt +
\int_{x_{0}}^{x}K_{2}\left(x,t\right)f_{2}\left(t\right)dt$     (1.25)

where, using Eq. (1.16),
$\displaystyle K_{4}\left(x,t\right)$ $\displaystyle w_{4}\left(x - t\right) = \frac{\left(x - t\right)^{3}}{6}$ (1.26)
$\displaystyle K_{3}\left(x,t\right)$ $\displaystyle w_{3}\left(x - t\right) = \frac{\left(x - t\right)^{2}}{2}$ (1.27)
$\displaystyle K_{2}\left(x,t\right)$ $\displaystyle w_{2}\left(x - t\right) = {\left(x - t\right)}$ (1.28)
and the load function $f\left(t\right)$ is
$\displaystyle f_{4}\left(t\right) = {q\left(t\right)}/{EI}, \quad f_{3}\left(t\...
... \mathcal{F}_{z}/{EI_{y}}, \quad
f_{2}\left(t\right) = \mathcal{M}_{x}/{EI_{y}}$     (1.29)

The particular solution $w_{e}\left(x\right)$ at a constant load $q_{z}$

$\displaystyle w_{e}\left(x\right) = - \frac{q_{z}}{EI}\int_{a_{q}}^{x}\frac{\le...
...ht\vert^{x}_{a_{q}} = \frac{q_{z}}{EI}\frac{\left(x - a_{q}\right)^{4}_{+}}{24}$     (1.30)

where $\left(x -a \right)_{+}$ is the Heaviside step function:
$\displaystyle \left(x -a \right)_{+} = \left\{
\begin{array}{ccc}
0, & if & {\l...
...< 0} \\
{x - a} , & if & {\left( x -a \right) \geq 0}
\end{array}\right. \quad$     (1.31)

In case of the point load $\mathcal{F}_{z}$ and moment $\mathcal{M}_{y}$, the functions , $K\left(x,t\right)$ in the Cauchy formula (1.24) are respectively

$\displaystyle f_{3}\left(t\right) = \frac{\mathcal{F}_{z}}{EI},$   $\displaystyle % \label{difflahendho16a} \\ %%{\delta}\left(t - a\right) \\
f_{2}\left(t\right) = \frac{\mathcal{M}_{y}}{EI}$ (1.32)
$\displaystyle K_{3}\left(x,t\right)$ $\textstyle =$ $\displaystyle w_{3}\left(x - t\right) = \frac{\left(x - t\right)^{2}}{2}$ (1.33)
$\displaystyle K_{2}\left(x,t\right)$ $\textstyle =$ $\displaystyle w_{2}\left(x - t\right) = \left(x - t\right)$ (1.34)

The particular solution $w_{e}\left(x\right)$ in case of the point load $\mathcal{F}_{z}$ and moment $\mathcal{M}_{y}$ is respectively

$\displaystyle w_{e}\left(x\right)$ $\displaystyle - \frac{\mathcal{F}_{z}}{EI}\int_{a_{F}}^{x}\frac{\left(x - t\rig...
...} = \frac{\mathcal{F}_{z}}{EI}\frac{\left(x - {a_{F}}\right)^{3}_{+}}{6}
\qquad$ (1.35)
$\displaystyle - \frac{\mathcal{M}_{y}}{EI}\int_{a_{M}}^{x}{\left(x - t\right)}\...
...M}} = \frac{\mathcal{M}_{y}}{EI}\frac{\left(x - a_{M}\right)^{2}_{+}}{2} \qquad$ (1.36)

The general solution of the non-homogeneous differential equation

$\displaystyle \mathrm{d^{4}}{w}/{\mathrm{dx^{4}}} = {q_{z}}/{EI_{y}} + \mathcal...
...a\right)/{EI_{y}} + \mathcal{M}_{x}{\delta}^{\prime}\left(t - a\right)/{EI_{y}}$     (1.37)
is the sum of the solutions of the homogeneous differential equation (1.22) (Sign Convention 2) and of the particular solutions of Eqs. (1.30), (1.35), and (1.36):
$\displaystyle w_{x} = w_{A} - \varphi_{A}\cdot x$ $\textstyle +$ $\displaystyle Q_{A}\frac{x^{3}}{6EI} + M_{A}\frac{x^{2}}{2EI}$  
  $\displaystyle \frac{q_{z}}{EI}\frac{\left(x - a_{q}\right)^{4}_{+}}{24} + \frac...
...{6} + \frac{\mathcal{M}_{y}}{EI}\frac{\left(x - a_{M}\right)^{2}_{+}}{2}
\qquad$ (1.38)

Let us take the derivatives of displacement from Eq. (1.38) and apply those to the governing differential equation (1.14). We obtain beam governing equations with the transfer matrix

$\displaystyle \underbrace{\left[\begin{array}{c}
w_{x} \\
\varphi_{x} \\
\ldots \\
Q_{x} \\
M_{x}
\end{array}\right]}_{\mathbf{Z_{x}}}$ $\displaystyle \underbrace{\left[ \begin{array}{ccccc}
1 & - x & \vdots & {x^{3}...
...\varphi_{A} \\
\ldots \\
Q_{A} \\
M_{A}
\end{array}\right]}_{\mathbf{Z_{A}}}$  
  $\displaystyle { \large { \underbrace{ \left[\begin{array}{cccccc}
+ & \frac{q_{...
...ray}\right]}_{\mathbf{\stackrel{\rm\circ}{Z}}} }} %
\qquad \qquad \qquad \qquad$ (1.39)

where the effect of the shear force ( $-{x}/{GA_{red}}$) from Eq. (1.3) is added to the deformation.

In symbolic matrix notation, the formulae of Eq. (1.39) can be written as

$\displaystyle {\mathbf{Z_{x}}} = {\mathbf{U_{x}}}{\mathbf{Z_{A}}} + {\mathbf{\stackrel{\rm\circ}{Z}}}$     (1.40)

Figure 1.10: External reactions and restraints on displacements
\begin{picture}(166,150)
%\{ tiny
%\{ small
\begin{small}\thinlines
% drawpat...
...d{center}\end{minipage}}
%\}
\end{small}%%%%%%%
%\} % small % tiny
\end{picture}

andres
2014-09-09