5.2 The governing equation for a beam-column

Consider the deformed beam-column element in Fig. 5.1. We must differentiate the forces in the deformed and undeformed axis of the beam. The axial force $S$ versus normal force $N$ and the transverse shear force $H$ versus shear force $Q$ are depicted in Fig. 5.1.

Figure 5.1: Normal, shear, axial and transverse shear forces
\includegraphics[width=105mm]{joonised/pikirist_en.eps}

The beam-column theory uses the Bernoulli5.1-Euler5.2 theory kinematic assumption that the curvature $\psi_{y}$ can be considered equal to the second derivative of the deflected longitudinal axis $w^{\prime \prime}$.

$\displaystyle {\psi_{y}} = \frac{-w^{\prime\prime}}{\left(1 + w^{\prime 2}\right)^{3/2}}
\approx {\,} {-w^{\prime\prime}}$     (5.1)

The relationship of Eq. (A.26) between the forces referred to the deformed and undeformed axis is

$\displaystyle \left[
\begin{array}{c}
S \\
H
\end{array}\right] =
\left[
\begi...
...s\varphi}
\end{array}\right]
\left[
\begin{array}{c}
N \\
Q
\end{array}\right]$     (5.2)

The ``small slope'' assumption, $\varphi \ll 1$, allows us to conclude that
$\displaystyle \cos\varphi \approx {\,} 1, \quad \sin\varphi \approx {\,} tan\varphi
\approx {\,} \varphi = - w^{\prime}$     (5.3)

and the relationship between the forces referred to the deformed and undeformed axis can be rewritten according to [RH95] and [PW94] in the form

$\displaystyle \left[
\begin{array}{c}
S \\
H
\end{array}\right] =
\left[
\begi...
...phi & {1}
\end{array}\right]
\left[
\begin{array}{c}
N \\
Q
\end{array}\right]$     (5.4)

Figure 5.2: Deformed beam elements with the axial and normal forces
\includegraphics[width=135mm]{joonised/iijarkts.eps}


Now we consider Fig. 5.2 c, and project the forces onto the direction of z-axis:
$\displaystyle \Sigma Z = 0:{\qquad} N\underbrace{\sin{\varphi}}_{\approx{\,} \v...
...i}}_{\approx{\,} 1} + q_{z}dx {\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}$      
$\displaystyle - \left(N + dN\right)\underbrace{\sin
\left({\varphi} + d{\varphi...
...os
\left({\varphi} + d{\varphi}\right)}_{\approx{\,} 1} = 0 \quad \qquad \qquad$     (5.5)

Taking into account the assumption of Eq. (5.3), we rewrite Eq. (5.5):

$\displaystyle \Sigma Z = 0:{\qquad\qquad\qquad} N{\varphi} -
Q + q_{z}dx {\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}$      
$\displaystyle - N{\varphi} - Nd{\varphi} - dN{\varphi} - \underbrace{dNd\varphi}_{\approx {\,} 0}
+ Q + dQ = 0 {\qquad\qquad\qquad}$     (5.6)
After reducing Eq. (5.6),

$\displaystyle - N\frac{d{\varphi}}{dx} - {\varphi}\frac{dN}{dx} +
\frac{dQ}{dx} + q_{z}\left(x\right) = 0$     (5.7)
or
$\displaystyle \frac{d}{dx}\left(- N{\varphi} + Q\right) + q_{z}\left(x\right) = 0$     (5.8)

From Eq. (5.4) we have
$\displaystyle - N{\varphi} + Q = H$     (5.9)

Using the previous equation, we can rewrite the equilibrium equation (5.8) in the form

$\displaystyle \frac{d}{dx}H + q_{z}\left(x\right) = 0$     (5.10)

Now we project the forces onto the direction of x-axis:

$\displaystyle \Sigma X = 0:{\quad\qquad} - N\underbrace{\cos{\varphi}}_{\approx...
...pprox{\,} \varphi} + q_{x}dx {\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}$      
$\displaystyle + \left(N + dN\right)\underbrace{\cos
\left({\varphi} + d{\varphi...
... d{\varphi}\right)}_{\approx{\,} \varphi + d{\varphi} } = 0 \quad \qquad \qquad$     (5.11)

With the assumption of Eq. (5.3),

$\displaystyle \Sigma X = 0:{\qquad\qquad\qquad} - N - Q{\varphi} +
q_{x}dx {\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}$      
$\displaystyle + N + dN + Q{\varphi} + dQ{\varphi} + {\varphi}dQ +
\underbrace{dQd\varphi}_{\approx {\,} 0} = 0 {\qquad\qquad\quad}$     (5.12)
Reducing this equation gives

$\displaystyle \frac{d}{dx}N + Q\frac{d}{dx}{\varphi} +
{\varphi}\frac{d}{dx}Q + q_{x}\left(x\right) = 0$     (5.13)
or
$\displaystyle \frac{d}{dx}\left(N + Q{\varphi}\right) + q_{x}\left(x\right) = 0$     (5.14)
From Eq. (5.4)
$\displaystyle N + \underbrace{Q\varphi}_{{\ll} N} = S_{x} {\cong} N$     (5.15)

Using Eqs. (5.15) and (5.14), we get
$\displaystyle \frac{d}{dx}S_{x} + q_{x}\left(x\right) = 0$     (5.16)

Next we write the equation of the sum of the moments and the moments of the forces acting about the end point of the element shown in Fig. 5.2 c:

$\displaystyle \Sigma M_{y} = 0:{\qquad\qquad\qquad} M + dM - M - Qds = 0$     (5.17)

Here, $ds$ is the length of the element. Hence $ds \approx {\,} dx$, and we rewrite Eq. (5.17):

$\displaystyle \frac{d}{dx}M - Q = 0$     (5.18)

Due to the orthogonality of Eq. (A.27), we can write an inverse relationship to Eq. (5.4)

$\displaystyle \left[
\begin{array}{c}
N \\
Q
\end{array}\right] =
\left[
\begi...
...phi & {1}
\end{array}\right]
\left[
\begin{array}{c}
S \\
H
\end{array}\right]$     (5.19)

where the expression for the shear force $Q$ is
$\displaystyle Q = S{\varphi} + H$     (5.20)

Figure 5.3: Components of the normal force
\includegraphics[width=45mm]{joonised/normkomp.eps}


Replacing from Eq. (5.18) by the expression (5.20), we obtain

$\displaystyle \frac{d}{dx}M - S{\varphi} - H = 0$     (5.21)
Hence $S_{x} {\cong} N$, and from Eq. (5.16)
$\displaystyle N^{\prime} + q_{x}\left(x\right) = 0$     (5.22)
Differentiating Eq. (5.21) we have

$\displaystyle M^{\prime\prime} -\left(S_{x}{\varphi}\right)^{\prime} - H^{\prime} = 0$     (5.23)

Replacing $H^{\prime}$ in the above equation by the expression from Eq. (5.10), and ${\varphi}$ by the expression ${\varphi} = {\beta} = - w^{\prime}$, we obtain
$\displaystyle M^{\prime\prime} +\left(S_{x}{w}^{\prime}\right)^{\prime} +
q_{z}\left(x\right) = 0$     (5.24)
or
$\displaystyle M^{\prime\prime} + S^{\prime}_{x}{w}^{\prime} +
\left(S_{x}{w}^{\prime}\right)^{\prime} + S_{x}{w}^{\prime} +
q_{z}\left(x\right) = 0$     (5.25)

For a constant axial force $S_{x}$ and a constant $EI_{y}$ we obtain

$\displaystyle M^{\prime\prime} + S_{x}{w}^{\prime\prime} +
q_{z}\left(x\right) = 0$     (5.26)

$\displaystyle M = - EI_{y}{w}^{\prime\prime}$     (5.27)

The governing differential equations take the form

$\displaystyle M^{\prime\prime}_{y} {\mp} {\vert}\frac{S_{x}}{EI_{y}}{\vert}M_{y} +
q_{z}\left(x\right) = 0 \quad$     (5.28)

where the minus sign denotes a tensile axial force ($S \geq 0$) and the plus sign a compressive axial force ($S \leq 0$).
Figure 5.4: Bending moments of a beam-column
\begin{figure}\begin{center}
\begin{overpic}[scale=.6]
{joonised/piki_m.eps}
\p...
...overline{x} -
x\right)dx}_{M^{I}} + Sw$}
\end{overpic}\end{center}
\end{figure}

The governing equations (5.28) for the beam-column transverse displacement can be written as

$\displaystyle \left[EI_{y}{w}^{\prime\prime}\right]^{\prime\prime} {\mp} {\vert}
S_{x}{\vert}{w}^{\prime\prime} - q_{z}\left(x\right) = 0$     (5.29)

and for a constant $EI_{y}$, we obtain
$\displaystyle \left[{w}^{\prime\prime}\right]^{\prime\prime} {\mp} {\vert}
\fra...
...EI_{y}}{\vert}{w}^{\prime\prime} -
\frac{q_{z}\left(x\right)}{EI_{y}} = 0 \quad$     (5.30)


where the minus sign marks a tensile axial force ($S \geq 0$) and the plus sign a compressive axial force ($S \leq 0$).

Equation (5.30) is the differential equation governing the deflection w of a beam-column member with a constant $EI_{y}$, subjected to a constant axial force at any end restraint.

In a second-order analysis, the total deflection w is calculated (see Fig. 5.4). The total bending moment $M^{II}$ is the sum of the bending moment $M^{I}$ of undeformed geometry of the member and the moment Sw (S - axial load, w - displacement) due to the deformed geometry of the member shown in Fig. 5.4 b. The moment is said to be amplified.

$\displaystyle M^{II} = M^{I} + S_{x}{w}$     (5.31)

The axial force $S$ can be presented with the displacements $u$ and $w$:

$\displaystyle S {\approx} {\,} N = - EA\left[u^{\prime} +
\frac{1}{2}\left(w^{\prime}\right)^{2}\right]$     (5.32)


where $\left[u^{\prime} + \frac{1}{2}\left(w^{\prime}\right)^{2}\right]$ is a large Kármán5.3-type deflection and $EA$ is the axial stiffness.


andres
2014-09-09