5.3.2 Transfer matrix for a beam element with axial force

Differentiating the solution $w\left(x\right)$ of Eq. (5.46) to a homogeneous differential equation for the compressive axial force (Sign Convention 1)

$\displaystyle w\left(x\right) = w_{0} - x \varphi_{0} +
\left[\sin\left(\frac{\...
... \left(\frac{l}{\nu}\right)^{3} \frac{\left. Q_{z}\right\vert _{\circ}}{EI_{y}}$      
$\displaystyle + \left[\cos\left(\frac{\nu}{l}x\right) - 1\right] \left(
\frac{l}{\nu}\right)^{2}\frac{\left. M_{y}\right\vert _{\circ}}{EI_{y}}$     (5.50)

we get the expression for rotation:

$\displaystyle \varphi_{x} = - w^{\prime}_{x}\left( x\right) = 0\cdot w_{0} - 1 ...
... \left(\frac{l}{\nu}\right)^{2} \frac{\left. Q_{z}\right\vert _{\circ}}{EI_{y}}$      
$\displaystyle + \left[\sin\left(\frac{\nu}{l}x\right)\right] \left(\frac{l}{\nu}\right)
\frac{\left. M_{y}\right\vert _{\circ}}{EI_{y}}$     (5.51)

Next we take the second derivative to find the bending moment $M_{y}\left(x\right)$:
$\displaystyle M_{y}\left(x\right) = - EI_{y}w^{\prime\prime}_{x}\left(x\right) ...
...}{l}x \right)\right]
\left(\frac{l}{\nu}\right)\left. Q_{z}\right\vert _{\circ}$      
$\displaystyle + \left[\cos\left(\frac{\nu}{l}x\right)\right] \left.M_{y}\right\vert _{\circ}$     (5.52)

Taking a derivative from the bending moment $M_{y}\left(x\right)$, we obtain the shear force $Q_{z}\left(x\right)$:
$\displaystyle Q_{z}\left(x\right) = - EI_{y}w^{\prime\prime\prime}_{x}\left(x\r...
...\left[\cos\left( \frac{\nu}{l}x \right)\right]
\left. Q_{z}\right\vert _{\circ}$      
$\displaystyle - \left[\sin\left(\frac{\nu}{l}x\right)\right]\frac{l}{\nu} \left.M_{y}\right\vert _{\circ}$     (5.53)

For the constant normal force $N_{x}\left(x\right)$ and axial displacement $u\left(x\right)$ we take (Sign Convention 1)
$\displaystyle u\left(x\right) = \left. u\right\vert _{\circ} + \frac{x}{NA}\left. N_{x}\right\vert _{\circ}$     (5.54)
$\displaystyle N_{x}\left(x\right) = \left. N_{x}\right\vert _{\circ}$     (5.55)
Now consider the vectors

$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} =
\mathbf{\left[ \begin{array}{c}...
...vert _{\circ} \\
\left.M_{y}\right\vert _{\circ}
\end{array}\right]_{A}} \quad$     (5.56)

the elements of which can be found from Eqs. (5.50)-(5.55).

These equations can now be written in matrix form:

$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} = \mathbf{U^{\left(N-1\right)}\cdot Z^{\left(N\right)}_{A}} % +
$     (5.57)

where $\mathbf{U^{\left(N-1\right)}}$ is the transfer matrix for the compressive axial force (Sign Convention 1).
$\displaystyle \mathbf{U^{\left(N-1\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...ight)\frac{l}{\nu} &
\cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$     (5.58)

For the tensile axial force (Sign Convention 1), the transfer equations are given by

$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} = \mathbf{U^{\left(N+1\right)}\cdot Z^{\left(N\right)}_{A}} % +
$     (5.59)

where $\mathbf{U^{\left(N+1\right)}}$ is the transfer matrix:

$\displaystyle \mathbf{U^{\left(N+1\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...\frac{l}{\nu} &
\mathrm{ch}\left(\nu\frac{x}{l}\right)
\end{array}\right] \quad$     (5.60)

For the compressive axial force (Sign Convention 2), the transfer equations are given by

$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} = \mathbf{U^{\left(N-2\right)}\cdot Z^{\left(N\right)}_{A}} % +
$     (5.61)

where $\mathbf{U^{\left(N-2\right)}}$ is the transfer matrix:

$\displaystyle \mathbf{U^{\left(N-2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...ght)\frac{l}{\nu} &
-\cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$     (5.62)

This transfer matrix has been obtained from Eqs. (5.58) and (5.60) by multiplying the 4th, 5th and 6th columns by $-1$ (see Sign Convention, Fig. 1.2).

For the tensile axial force (Sign Convention 2), the transfer equations are given by

$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} = \mathbf{U^{\left(N+2\right)}\cdot Z^{\left(N\right)}_{A}} % +
$     (5.63)

where $\mathbf{U^{\left(N+2\right)}}$ is the transfer matrix:
$\displaystyle \mathbf{U^{\left(N+2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...rac{l}{\nu} &
- \mathrm{ch}\left(\nu\frac{x}{l}\right)
\end{array}\right] \quad$     (5.64)

The transformation matrices of Eqs. (5.62) and (5.64) can be represented with the GNU Octave function ylfmII.m (p. [*]).


andres
2014-09-09