5.3.2 Transfer matrix for a beam element with axial force
Differentiating the solution
of Eq. (5.46) to a homogeneous differential equation for the compressive axial force (Sign Convention 1)
 |
|
|
|
![$\displaystyle + \left[\cos\left(\frac{\nu}{l}x\right) - 1\right] \left(
\frac{l}{\nu}\right)^{2}\frac{\left. M_{y}\right\vert _{\circ}}{EI_{y}}$](img590.png) |
|
|
(5.50) |
we get the expression for rotation:
 |
|
|
|
![$\displaystyle + \left[\sin\left(\frac{\nu}{l}x\right)\right] \left(\frac{l}{\nu}\right)
\frac{\left. M_{y}\right\vert _{\circ}}{EI_{y}}$](img592.png) |
|
|
(5.51) |
Next we take the second derivative to find the bending moment
:
![$\displaystyle M_{y}\left(x\right) = - EI_{y}w^{\prime\prime}_{x}\left(x\right) ...
...}{l}x \right)\right]
\left(\frac{l}{\nu}\right)\left. Q_{z}\right\vert _{\circ}$](img594.png) |
|
|
|
![$\displaystyle + \left[\cos\left(\frac{\nu}{l}x\right)\right] \left.M_{y}\right\vert _{\circ}$](img595.png) |
|
|
(5.52) |
Taking a derivative from the bending moment
, we obtain the shear force
:
![$\displaystyle Q_{z}\left(x\right) = - EI_{y}w^{\prime\prime\prime}_{x}\left(x\r...
...\left[\cos\left( \frac{\nu}{l}x \right)\right]
\left. Q_{z}\right\vert _{\circ}$](img597.png) |
|
|
|
![$\displaystyle - \left[\sin\left(\frac{\nu}{l}x\right)\right]\frac{l}{\nu} \left.M_{y}\right\vert _{\circ}$](img598.png) |
|
|
(5.53) |
For the constant normal force
and axial displacement
we take (Sign Convention 1)
 |
|
|
(5.54) |
 |
|
|
(5.55) |
Now consider the vectors
![$\displaystyle \mathbf{Z^{\left(N\right)}_{x}} =
\mathbf{\left[ \begin{array}{c}...
...vert _{\circ} \\
\left.M_{y}\right\vert _{\circ}
\end{array}\right]_{A}} \quad$](img603.png) |
|
|
(5.56) |
the elements of which can be found from Eqs. (5.50)-(5.55).
These equations can now be written in matrix form:
 |
|
|
(5.57) |
where
is the transfer matrix for the compressive axial force (Sign Convention 1).
![$\displaystyle \mathbf{U^{\left(N-1\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...ight)\frac{l}{\nu} &
\cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$](img606.png) |
|
|
(5.58) |
For the tensile axial force (Sign Convention 1), the transfer equations are given by
 |
|
|
(5.59) |
where
is the transfer matrix:
![$\displaystyle \mathbf{U^{\left(N+1\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...\frac{l}{\nu} &
\mathrm{ch}\left(\nu\frac{x}{l}\right)
\end{array}\right] \quad$](img609.png) |
|
|
(5.60) |
For the compressive axial force (Sign Convention 2), the transfer equations are given by
 |
|
|
(5.61) |
where
is the transfer matrix:
![$\displaystyle \mathbf{U^{\left(N-2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...ght)\frac{l}{\nu} &
-\cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad$](img612.png) |
|
|
(5.62) |
This transfer matrix has been obtained
from Eqs. (5.58) and (5.60) by multiplying the
4th, 5th and 6th
columns by
(see Sign Convention, Fig. 1.2).
For the tensile axial force (Sign Convention 2), the transfer equations are given by
 |
|
|
(5.63) |
where
is the transfer matrix:
![$\displaystyle \mathbf{U^{\left(N+2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...rac{l}{\nu} &
- \mathrm{ch}\left(\nu\frac{x}{l}\right)
\end{array}\right] \quad$](img616.png) |
|
|
(5.64) |
The transformation matrices of Eqs. (5.62) and (5.64) can be represented
with the GNU Octave function ylfmII.m
(p.
).
andres
2014-09-09