|
 |
|
|
(5.41) |
We make similar rearrangements with the fundamental set of solutions from Eq. (5.37) (with columns of Eq. (5.39)). Once more we
- subtract the 1st column from the 3rd column and multiply the result by
:
- subtract the 2nd column from the 4th column and multiply the result by
:
- multiply the 2nd column by
: x.
We get the normed fundamental set of solutions for the compressive axial force:
![$\displaystyle \begin{array}{ll}
w_{1} = 1, & w_{2} = x, \\
w_{3} = - \left(\fr...
...sin\left(\frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right]
\end{array}$](img574.png) |
|
|
(5.42) |
The normed fundamental set of solutions for the tensile axial force is:
![$\displaystyle \begin{array}{ll}
w_{1} = 1, & w_{2} = x, \\
w_{3} = \left(\frac...
...sh}\left(\frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right]
\end{array}$](img575.png) |
|
|
(5.43) |
There are two sign conventions (see Fig. (1.2)) for the internal reactions 5.4 5.5 (contact forces).
For the parameters
, and
of the searchable function at
(Sign Convention 1) we obtain
 |
|
|
(5.44) |
and for Sign Convention 2
 |
|
|
(5.45) |
The complete solution for the compressive axial force (Sign Convention 1) is
![$\displaystyle w = w_{0} - \varphi_{0}x + \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...\left(
\frac{l}{\nu}\right)^{2}\left[\cos\left(\frac{\nu}{l}x\right) - 1\right]$](img578.png) |
|
|
|
![$\displaystyle + \left.\frac{Q_{z}}{EI_{y}}\right\vert _{\circ}\left(\frac{l}{\n...
...frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right] +
w_{e}\left(x\right)$](img579.png) |
|
|
(5.46) |
and for the tensile axial force (Sign Convention 1)
![$\displaystyle w = w_{0} - \varphi_{0}x - \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...frac{l}{\nu}\right)^{2}\left[ \mathrm{ch}\left(\frac{\nu}{l}x\right) - 1\right]$](img580.png) |
|
|
|
![$\displaystyle - \left.\frac{Q_{z}}{EI_{y}}\right\vert _{\circ}\left(\frac{l}{\n...
...frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right] +
w_{e}\left(x\right)$](img581.png) |
|
|
(5.47) |
The complete solution for the compressive axial force (Sign Convention 2) is
![$\displaystyle w = w_{0} - \varphi_{0}x - \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...\left(
\frac{l}{\nu}\right)^{2}\left[\cos\left(\frac{\nu}{l}x\right) - 1\right]$](img582.png) |
|
|
|
|
|
|
(5.48)
|
and for the tensile axial force (Sign Convention 2)
![$\displaystyle w = w_{0} - \varphi_{0}x + \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...frac{l}{\nu}\right)^{2}\left[ \mathrm{ch}\left(\frac{\nu}{l}x\right) - 1\right]$](img583.png) |
|
|
|
|
|
|
(5.49)
|
Relations between the 1st and 2nd sign conventions for a
bending moment and shear force:
andres
2014-09-09