5.3.1 The set of solutions to a homogeneous differential equation

The fundamental set of solutions to the homogeneous differential equation

$\displaystyle \frac{d^{4}w}{dx^{4}}{\,} {\pm}{\,} {\vert}\frac{S}{EI_{y}}{\vert}\frac{d^{2}w}{dx^{2}} = 0$     (5.36)

for a compressive axial force with magnitude ${\vert}S{\vert}$ is
$\displaystyle w_{1}^{\ast} = 1, \quad w_{2}^{\ast} = \frac{\nu}{l}x,
\quad w_{3...
...rac{\nu}{l}x\right), \quad
\quad w_{4}^{\ast} = \sin\left(\frac{\nu}{l}x\right)$     (5.37)

and for a tensile axial force with magnitude

$\displaystyle w_{1}^{\ast} = 1, \quad w_{2}^{\ast} = \frac{\nu}{l}x,
\quad w_{3...
...}{l}x\right), \quad
\quad w_{4}^{\ast} = \mathrm{sh}\left(\frac{\nu}{l}x\right)$     (5.38)

where $\nu = l\sqrt{{S}/{EI_{y}}}$ is a characteristic parameter of a beam-column member and l is the length of the member.

Consider next the Wronski determinant $W\left(x\right)$ of the fundamental set of solutions from Eq. (5.37):

$\displaystyle W\left(x\right) = \left\vert \begin{array}{cccc}
1 & \frac{\nu}{l...
...(\frac{\nu}{l}\right)^{3}\cos\left(\frac{\nu}{l}x\right)
\end{array}\right\vert$     (5.39)

Hence the Wronskian $W\left(x\right)$ value at $x=0$ is not 1:
$\displaystyle W\left(0\right) = \left\vert \begin{array}{cccc}
1 & 0 & 1 & 0 \\...
...0 \\
0 & 0 & 0 & -\left(\frac{\nu}{l}\right)^{3}
\end{array}\right\vert \neq 1$     (5.40)

Let us norm the Wronskian of the previous equation by

Now the value of the Wronskian
$\displaystyle W\left(x = 0\right) = \left\vert \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\vert = 1$     (5.41)

We make similar rearrangements with the fundamental set of solutions from Eq. (5.37) (with columns of Eq. (5.39)). Once more we We get the normed fundamental set of solutions for the compressive axial force:
$\displaystyle \begin{array}{ll}
w_{1} = 1, & w_{2} = x, \\
w_{3} = - \left(\fr...
...sin\left(\frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right]
\end{array}$     (5.42)

The normed fundamental set of solutions for the tensile axial force is:
$\displaystyle \begin{array}{ll}
w_{1} = 1, & w_{2} = x, \\
w_{3} = \left(\frac...
...sh}\left(\frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right]
\end{array}$     (5.43)

There are two sign conventions (see Fig. (1.2)) for the internal reactions 5.4 5.5 (contact forces).

For the parameters $w_{0},\enspace w_{0}^{\prime}, \enspace w_{0}^{\prime\prime}$, and $w_{0}^{\prime\prime\prime}$ of the searchable function at $x = x_{0}$ (Sign Convention 1) we obtain

$\displaystyle w_{0} = w_{0}, \enspace w_{0}^{\prime} = - \varphi_{0}, \enspace
...
...ac{M_{y}}{EI_{y}}, \enspace
w_{0}^{\prime\prime\prime} = - \frac{Q_{z}}{EI_{y}}$     (5.44)

and for Sign Convention 2

$\displaystyle w_{0} = w_{0}, \enspace w_{0}^{\prime} = - \varphi_{0}, \enspace
...
...frac{M_{y}}{EI_{y}}, \enspace
w_{0}^{\prime\prime\prime} = \frac{Q_{z}}{EI_{y}}$     (5.45)

The complete solution for the compressive axial force (Sign Convention 1) is

$\displaystyle w = w_{0} - \varphi_{0}x + \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...\left(
\frac{l}{\nu}\right)^{2}\left[\cos\left(\frac{\nu}{l}x\right) - 1\right]$      
$\displaystyle + \left.\frac{Q_{z}}{EI_{y}}\right\vert _{\circ}\left(\frac{l}{\n...
...frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right] +
w_{e}\left(x\right)$     (5.46)
and for the tensile axial force (Sign Convention 1)

$\displaystyle w = w_{0} - \varphi_{0}x - \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...frac{l}{\nu}\right)^{2}\left[ \mathrm{ch}\left(\frac{\nu}{l}x\right) - 1\right]$      
$\displaystyle - \left.\frac{Q_{z}}{EI_{y}}\right\vert _{\circ}\left(\frac{l}{\n...
...frac{\nu}{l}x\right) -
\left(\frac{\nu}{l}x\right)\right] +
w_{e}\left(x\right)$     (5.47)

The complete solution for the compressive axial force (Sign Convention 2) is

$\displaystyle w = w_{0} - \varphi_{0}x - \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...\left(
\frac{l}{\nu}\right)^{2}\left[\cos\left(\frac{\nu}{l}x\right) - 1\right]$      
    (5.48)
and for the tensile axial force (Sign Convention 2)

$\displaystyle w = w_{0} - \varphi_{0}x + \left.\frac{M_{y}}{EI_{y}}\right\vert ...
...frac{l}{\nu}\right)^{2}\left[ \mathrm{ch}\left(\frac{\nu}{l}x\right) - 1\right]$      
    (5.49)
Relations between the 1st and 2nd sign conventions for a bending moment and shear force:

$\left.{M_{y}}\right\vert _{\circ \,\left( Sign \, Convention \, 1\right)}$ = $\left.{ - M_{y}}\right\vert _{\circ \,\left( Sign \, Convention \, 2\right)}$
$\left.{Q_{z}}\right\vert _{\circ \,\left( Sign \, Convention \, 1\right)}$ = $\left.{ - Q_{z}}\right\vert _{\circ \,\left( Sign \, Convention \, 2\right)}$


andres
2014-09-09