2.1 Basic equations of the system

Next we consider the basic equations of the system described by the transfer matrix equations (1.48):

$\displaystyle \mathbf{\widehat{IU}}\cdot\mathbf{\widehat{Z}} = \mathbf{\stackrel{\rm\circ}{Z}}$     (2.2)

where
$\displaystyle \mathbf{\widehat{Z}} =
\left[\begin{array}{c}
\mathbf{Z_{L}} \\
\mathbf{Z_{A}}
\end{array}\right]$     (2.3)

$\mathbf{Z_{L}}$, $\mathbf{Z_{A}}$ are the vectors of displacements and forces at the end and at the beginning of the element, respectively, and $\mathbf{\stackrel{\rm\circ}{Z}}$ is the loading vector of the element from Eq. (1.46) at $x=l$.

To insert the system of basic equations (2.2) into the system of Eq. (2.1), the GNU Octave functions ysplvfmhvI.m (p. [*]), yzhqz.m (p. [*]), yzfzv.m (p. [*]), spInsertBtoA.m (p. [*]), InsertBtoA.m ) are used. The procedure of inserting is given in excerpt 2.1 from the program.


Program excerpt 2.1 (The basic equations. LaheFrameDFIm.m )  

\begin{lstlisting}[frame=singele,framerule=0pt]{}
IIv=0;
IJv=0;
for i=1:NEARV...
...spA,IIv,IJv,spvF);
B=InsertBtoA(B,NNK,1,IIv,1,vB,6,1);
endfor
\end{lstlisting}

andres
2014-09-09