C.2 Transfer matrices of second-order analysis

The transfer equations with axial and transverse shear forces are of the form
$\displaystyle \mathbf{{\tilde{Z}}_{p}} - \mathbf{\tilde{U}}\mathbf{{\tilde{Z}}_{v}} =
\mathbf{\stackrel{\rm\circ}{\tilde{Z}}}$     (C.7)
where

$\displaystyle \mathbf{{\tilde{Z}}_{p}} =
\left[ \begin{array}{c}
u \\
w \\
\v...
...
w \\
\varphi_{y} \\
S_{x} \\
H_{z} \\
M_{y}
\end{array} \right]_{v}
\quad$     (C.8)
where
$S$ - axial force,
$H$ - transverse shear force, see Fig. 5.1.

Numerical difficulties may occur when the transfer matrix manipulation involves differences of large numbers (forces and displacements can differ ca $10^{3}$ times), leading to inaccuracies in computations [PW94], [PL63]. Round-off errors can be reduced by scaling. We will scale (multiply) the displacements and rotations by $i_{0}= EI_{basic}/l_{basic}$ (the scaling multiplier for the displacements). After solving a system of linear equations of a boundary value problem, we divide each of the displacements and rotations found by $i_{0}= EI_{basic}/l_{basic}$. Displacements and forces at the beginning of members determine unscaled initial parameter vectors for the structure members.

The transfer matrix $\mathbf{U}$ from Eqs. (C.7), (C.9), and (C.10) of a second-order analysis for a frame (Sign Convention 2) can be computed using the GNU Octave function ylfmhvII.m (p. [*]).
The transfer matrix $\mathbf{U}$ for a frame in compression, Sign Convention 2:

$\displaystyle \mathbf{\tilde {U}} =
\left[\begin{array}{cccccc}
1 & 0 & 0 & - i...
...\frac{- \sin\frac{\nu x}{l}}{\nu}{x} & - \cos\frac{\nu x}{l}
\end{array}\right]$     (C.9)

Table C.3: Loading vectors of compression (axial force $S$ and transverse shear force $H$)
\begin{table}\centering\vspace*{2mm}
\begin{picture}(130,78)\thinlines
\dra...
...icklines
\put(4,75){\line(1,0){130.0}}
\end{picture}\vspace*{-12pt}
\end{table}


The transfer matrix $\mathbf{U}$ for a frame in tension, Sign Convention 2:

$\displaystyle \mathbf{\tilde {U}_{t}} =
\left[\begin{array}{cccccc}
1 & 0 & 0 &...
...m{sh}\frac{\nu x}{l}}{\nu}{x} & - \mathrm{ch}\frac{\nu x}{l}
\end{array}\right]$     (C.10)


Table C.4: Loading vectors of tension (axial force $S$ and transverse shear force $H$)
\begin{table}\centering\vspace*{2mm}
\begin{picture}(130,78)\thinlines
\dra...
...hicklines
\put(4,75){\line(1,0){130.0}}
\end{picture}\vspace*{-5pt}
\end{table}



Table C.5: Loading vectors of compression (normal force $N$ and shear force $Q$)
\begin{table}\centering\vspace*{2mm}
\begin{picture}(130,78)\thinlines
\dra...
...icklines
\put(4,75){\line(1,0){130.0}}
\end{picture}\vspace*{-10pt}
\end{table}


In the case of a uniformly distributed load $q_{z}$, the loading vector $\mathbf{\stackrel{\rm\circ}{Z}}$ (see Eq. (C.7)) of a second-order analysis for a frame member under axial compression $S_{x}$ is

$\displaystyle \mathbf{\stackrel{\rm\circ}{\tilde {Z}}} =
\left[\begin{array}{c}...
...\left( \nu \frac{x}{l} \right) \right]\frac{ql^{2}}{\nu^{2}}
\end{array}\right]$     (C.11)

and for a frame member under axial tension $S_{x}$,

$\displaystyle \mathbf{\stackrel{\rm\circ}{\tilde {Z}}_{t}} =
\left[\begin{array...
...\left( \nu \frac{x}{l} \right) \right]\frac{ql^{2}}{\nu^{2}}
\end{array}\right]$     (C.12)

Table C.6: Loading vectors of tension (normal force $N$ and shear force $Q$)
\begin{table}\centering\vspace*{2mm}
\begin{picture}(130,78)\thinlines
\dra...
...icklines
\put(4,75){\line(1,0){130.0}}
\end{picture}\vspace*{-10pt}
\end{table}

The loading vectors in Tables C.3, C.4, C.5, and C.6 are comparable with those in [Krä91b] and [Bor79b].

The loading vectors of Eqs. (C.11) and (C.12) can be computed using the GNU Octave function ylqvII.m .

In the case of a point load $F_{z}$, the loading vector $\mathbf{\stackrel{\rm\circ}{Z}}$ (see Eq. (C.7)) of a second-order analysis for a frame member under axial compression $S_{x}$ is

$\displaystyle \mathbf{\stackrel{\rm\circ}{\tilde {Z}}} =
\left[\begin{array}{c}...
...frac{\left(x - a\right)_{+}}{l}\right) \right]\frac{Fl}{\nu}
\end{array}\right]$     (C.13)

and for a frame member under axial tension $S_{x}$,
$\displaystyle \mathbf{\stackrel{\rm\circ}{\tilde {Z}}_{t}} =
\left[\begin{array...
...frac{\left(x - a\right)_{+}}{l}\right) \right]\frac{Fl}{\nu}
\end{array}\right]$     (C.14)

where $\left(x -a \right)_{+}$ is the Heaviside function:
$\displaystyle \left(x -a \right)_{+} = \left\{
\begin{array}{ccc}
0, & if & {\l...
...< 0} \\
{x - a} , & if & {\left( x -a \right) \geq 0}
\end{array}\right. \quad$     (C.15)

The loading vectors of Eqs. (C.13) and (C.14) can be computed using the GNU Octave function ylfhvzII.m .

The basic system of equations or the frame element of Eq. (C.7) can be rewritten in the form

$\displaystyle \mathbf{\widehat{IU}}\cdot\mathbf{\widehat{Z}} = \mathbf{\stackrel{\rm\circ}{Z}}$     (C.16)

where the matrix $\mathbf{\widehat{IU}}$ can be computed using the GNU Octave function ysplvfmhvII.m , in which the GNU Octave function ysplfmhvII.m (p. [*]) is used. These functions differentiate between pressure and tensile axial loading.

The loading vectors of a uniformly distributed load and a point load for a frame can be computed using the GNU Octave functions ylqvII.m (p. [*]) and ylfhvzII.m (p. [*]). These functions differentiate between pressure and tensile axial loading.

The transfer equations with normal and shear forces ($N$ - normal force, $Q$ - shear force shown in Fig. 5.1):

$\displaystyle \mathbf{Z_{p}} = \mathbf{U_{x}\cdot Z_{v}} + \mathbf{\stackrel{\rm\circ}{Z}}$     (C.17)
where
$\displaystyle \mathbf{Z_{p}} = \left[ \begin{array}{c}
u \\
w \\
\varphi_{y} ...
...
w \\
\varphi_{y} \\
N_{x} \\
Q_{z} \\
M_{y}
\end{array} \right]_{v}
\quad$     (C.18)

and the transfer matrix $\mathbf{U_{x}}\equiv\mathbf{U^{\left(N-2\right)}}$ for a compressive normal force (Sign Conven-tion 2)

$\displaystyle \mathbf{U^{\left(N-2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
... &
-\cos\left( \frac{\nu x}{l}\right)
\end{array}\right] \quad
% see oli enne
$     (C.19)

while $\mathbf{U_{x}}\equiv\mathbf{U^{\left(N+2\right)}}$ for a tensile normal force (Sign Convention 2)

$\displaystyle \mathbf{U^{\left(N+2\right)}} =
\left[ \begin{array}{cccccc}
1 & ...
...mathrm{ch}\left(\nu\frac{x}{l}\right)
\end{array}\right] \quad
% see oli enne
$     (C.20)

Transfer matrices (C.19) and (C.20) can be computed with the GNU Octave function ylfmII.m (p. [*]).


andres
2014-09-09