6.2 Illustrative frame problem 1

Example 6.1   Problem Statement. Figure 6.1 shows a frame of the span length $l = 6{\,}\mathrm{m}$, carrying a uniform load $q = 20{\,}\mathrm{kN/m}$. The $5{\,}\mathrm{m}$ long column 3-4 and the $2.5{\,}\mathrm{m}$ long column 2-3 are both loaded with a vertical force $F = 800{\,}\mathrm{kN}$. At node 2, a horizontal force $H = 90{\,}\mathrm{kN}$ acts.

Figure 6.1: The frame EST1
\includegraphics[width=90mm]{joonised/raamn1moe.eps}


We assume that the value of the column flexural rigidity $EI_{p} = 2\cdot10^{4}
{\,}\mathrm{kN}\hspace*{-2pt}\cdot\hspace*{-2pt}\mathrm{m}^{2}$ and that of the beam $EI_{r} = 1.5EI_{p}$ ( $I_{1} = 1.5{\,}I_{2}$); axial rigidity of the columns $EAp=2.0\cdot10^{20}{\,}\mathrm{kN}$ and that of the beam $EAr=2.0\cdot10^{20}{\,}\mathrm{kN}$; shear rigidity of the columns $GAp=1.0\cdot10^{25}$ and that of the beam $GAr=1.0\cdot10^{25}$.

We wish to compute the displacements, reactions, internal forces, and draw the axial force, shear force and bending moment diagrams.

Problem Solving. To solve the problem, we use the EST method. The solving procedure includes the following.

  1. Data input: the number of frame nodes, elements, support reactions; element properties, element loads in local coordinates, node forces in global coordinates, nodal coordinates, topology and hinges, restrictions on support displacements.

    $\displaystyle \mathbf{spA}{\cdot}\mathbf{Z} = \mathbf{B}$     (6.5)

  2. Assembling and solving the boundary problem equations (6.1) and (6.5) (prepared and solved by the program). To implement this aim, the program
    1. inserts the basic equations of a frame into the equation system,
    2. adds the compatibility equations of the displacements at nodes to the equation system,
    3. adds the joint equilibrium equations,
    4. adds the side conditions (hinges),
    5. adds the restrictions on support displacements,
    6. solves the system of sparse equations,
    7. produces an output: initial parameter vectors for element displacements and forces; support reactions.
  3. Output: element displacements and forces determined by the transfer matrix.

Figure 6.2: Numeration of displacements and forces of the frame EST1
\includegraphics[width=100mm]{joonised/raamny1moe.eps}


1. Input data for the GNU Octave program yspESTframe1LaheWFI.m are given in excerpts from the program: element and nodal loads - excerpt 6.2; nodal coordinates - excerpt 6.3; element properties, topology and hinges - excerpt 6.4.

Program excerpt 6.2 ( ''Nmitmeks'' yspESTframe1LaheWFI.m )  
 epsdountil=0.0000001; # for iteration (max |S| increment)
 Number_of_frame_nodes=4 
 Number_of_elements=3
 Number_of_support_reactions=5
 spNNK=12*Number_of_elements+Number_of_support_reactions;
 Number_of_unknowns=spNNK 
 Displacements and forces are calculated on parts ''Nmitmeks'' of the element
 Nmitmeks=4 
# --- Element properties ---
  
 EIp=20000; # kN/m^2
 EIr=40000; # kN/m^2
# EAp=4.6*10^6; 
 EAp=2.0^20; 
# EAp=4.6*10^6; 
 EAr=6.8*10^20;
# EAr=6.8*10^6;
 GAp=1.0e+25;
 GAr=1.0e+25;
# GAp=0.4*EAp; 
# GAr=0.4*EAr;
  
 baasi0=EIp/5  # scaling multiplier for displacements 
# baasi0=1.0;
# Element load  in local coordinates 
#  qz     qx     qA      qL 
# Uniformly distributed load in local coordinate z and x directions
LoadsqONelement=4;
esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
baasi0=EIp/5  # scaling multiplier for the displacements
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 5.0]; 
esQkoormus(1,1:4,2)=[20.0 0.0 0.0 6.0];
esQkoormus(1,1:4,3)=[0.0 0.0 0.0 2.5];
 
#
# Point load in local coordinate z and x directions  kN
#  Fz, Fx, aF (coordinate of the point of force application)
LoadsF_on_Element=5; 
esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 5.0];
esFjoud(1,1:3,2)=[0.0 0.0 6.0];  
esFjoud(1,1:3,3)=[0.0 0.0 2.5];
 
#
# Node forces in global coordinates
# sSolmF(forces,1,nodes); forces=[Fx; Fz; My]
sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0
sSolmF(2,1,1)= 800.0;  %  Fz
sSolmF(1,1,2)= -90.0;  %  Fx
sSolmF(2,1,2)= 800.0;  %  Fz
#sSolmF(:,1,3)= 0.0
#sSolmF(:,1,4)= 0.0
 
#
#s1F(1,1,1)=0.0;  # force Fz
#s1F(2,1,1)=0.0;  # force Fz
#s1F(3,1,1)=0.0;  # force My

# Support shift - tSiire#
# Support shift is multiplied by scaling multiplier
tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0
#tSiire(2,1,1)= 0.01*baasi0
#tSiire(:,1,2)= 0.0
#tSiire(:,1,3)= 0.0
#tSiire(:,1,4)= 0.0

Program excerpt 6.3 ( yspESTframe1LaheWFI.m )  
#==========
#     Nodal coordinates
#==========
krdn=[#  x       z
        0.0     0.0;    % node 1
        6.0     0.0;    % node 2
        6.0     2.5;    % node 3
        0.0     5.0];   % node 4
#========== 

#==========
#  Restrictions on support displacements (on - 1, off - 0)
# Support  No   u   w  fi 
#==========       
tsolm=[3       1 1 0;   % node 3
       4       1 1 1];  % node 4    
#==========

Program excerpt 6.4 ( yspESTframe1LaheWFI.m )  
# ------------- Element properties, topology and hinges ---------
elasts=[# Element properties 
#            n2 - end of the element
#                  n1 - beginning of the element
#                       N, Q, M - hinges at the end of the element
#                                N, Q, M - hinges at the beginning of the element
#  
 EIp EAp GAp   1     4    0 0 0    0 0 0;    % element 1
 EIr EAr GAr   2     1    0 0 0    0 0 0;    % element 2
 EIp EAp GAp   3     2    0 0 1    0 0 0];   % element 3
# 1 - hinge 'true' (axial, shear, moment hinges)
#

2. Assembling and solving the boundary problem equations (6.5), carried out by the function Lahe2FrameDFIm(baasi0,Ntoerkts,esQkoormus,esFjoud,sSolmF,tsolm,tSiire, krdn,selem). The program has numbered the displacements and forces of the element ends of the frame as shown in Fig. 6.2.

The results of iteration of the axial forces are shown in excerpt 6.3 from the computing diary.

Computing diary excerpt 6.3 ( yspESTframe1LaheWFI.m )  
SIvec =
Element  Linear     1         2         3         4         5
  1    -897.500  -904.385  -904.364  -904.364  -904.364  -904.364
  2     -54.000   -55.431   -55.362   -55.362   -55.362   -55.362
  3    -822.500  -815.615  -815.636  -815.636  -815.636  -815.636

The unscaled initial parameter vectors of the elements are shown in excerpt 6.4 from the computing diary.

Computing diary excerpt 6.4 ( yspESTframe1LaheWFI.m )  
-------- Scaling multiplier for displacements = 1/baasi0 -------- 
============================================================================
 Unscaled initial parameter vector 
Element No    u          w          fi           S          H          M 
----------------------------------------------------------------------------
   1  -0.000e+00   0.000e+00   0.000e+00      904.364     55.362   -154.733
   2  -3.344e-02   2.261e-17   3.342e-04       55.362   -104.364    152.316
   3   1.020e-17   3.344e-02   8.548e-03      815.636     34.638   -113.870
----------------------------------------------------------------------------

The support reactions of the frame in global coordinates are shown in excerpt 6.5 from the computing diary.

Computing diary excerpt 6.5 ( yspESTframe1LaheWFI.m )  
Support reactions begin from X row: 37  
===========================================
 No         X        Node    Cx <=> 1 
                             Cz <=> 2
                             Cy <=> 3 
------------------------------------------- 
 37   +3.463836e+01    3         1 
 38   -8.156356e+02    3         2 
 39   +5.536164e+01    4         1 
 40   -9.043644e+02    4         2 
 41   -1.547333e+02    4         3  
--------------------------------------------

        
         3. Output: the element displacements and forces determined by the transfer matrix are given in excerpt 6.6 from the computing diary.

The bending moment, shear force Q and axial force N diagrams of the frame EST1 are shown in Fig. 6.3.

Figure 6.3: Internal forces diagrams of the frame EST1
\includegraphics[width=75mm]{joonised/raamnp4iIIe.eps}
[Axial force N diagram]

\includegraphics[width=90mm]{joonised/raamnp3iIIe.eps}
                  [Shear force Q diagram]
    

\includegraphics[width=68mm]{joonised/raamnp2iIIe.eps}
[Bending moment diagram]
                             (bracketed are values of linear solution)

Computing diary excerpt 6.6 ( yspESTframe1LaheWFI.m )  
#=================================================================================
 Element displacements and forces determined by transfer matrix 
#================================================================================= 
Displacements and forces of element no 1 of length 5.000 m 
The element is divided into 4 parts 
 displacement u - 0.00000e+00 -5.65228e-18 -1.13046e-17 -1.69568e-17 -2.26091e-17
 displacement w - 0.00000e+00 -5.11088e-03 -1.65057e-02 -2.80093e-02 -3.34392e-02
 rotation    fi - 0.00000e+00  7.40749e-03  9.99497e-03  7.58070e-03  3.34242e-04
 
 normal force N - -904.36438  -904.36438   -904.36438   -904.36438   -904.36438
 shear force  Q -  -55.36164   -62.06071    -64.40074   -62.21735     -55.66392
 moment force M -  154.73331    80.90916      1.40208   -78.20348    -152.31615
------------------
 axial  force S - -904.36438  -904.36438   -904.36438   -904.36438   -904.36438
 transv force H - -55.36164    -55.36164   -55.36164     -55.36164    -55.36164
----------------------------------------------------------------------------
Displacements and forces of element no 2 of length 6.000 m 
The element is divided into 4 parts 
 displacement u - -3.34392e-02 -3.34392e-02 -3.34392e-02 -3.34392e-02 -3.34392e-02
 displacement w -  2.26091e-17  3.39304e-03  8.42296e-03  8.39268e-03  3.29397e-10
 rotation    fi -  3.34242e-04 -3.73960e-03 -2.22252e-03  2.62995e-03  8.54847e-03
 normal force N -  -55.36164   -55.36164    -55.36164    -55.36164    -55.36164
 shear force  Q -  104.34587    74.57141     44.48742     14.21878    -16.10888
 moment force M - -152.31615   -18.08174     71.24329    115.28819    113.87012
------------------
 axial  force S -  -55.36164   -55.36164    -55.36164    -55.36164    -55.36164
 transv force H -  104.36438    74.36438     44.36438     14.36438    -15.63562
----------------------------------------------------------------------------
Displacements and forces of element no 3 of length 2.500 m 
The element is divided into 4 parts 
 displacement u - 1.01954e-17  7.64658e-18  5.09772e-18  2.54886e-18 1.54074e-33
 displacement w - 3.34392e-02  2.70705e-02  1.90043e-02  9.79115e-03 7.61059e-11
 rotation    fi - 8.54847e-03  1.16917e-02  1.39732e-02  1.53568e-02 1.58205e-02
 normal force N - -815.63562  -815.63562   -815.63562   -815.63562   -815.63562
 shear force  Q -  -41.61080   -44.17449    -46.03540    -47.16392    -47.54210
 moment force M -  113.87012    87.02657     58.79850     29.63498     -0.00000
------------------
 axial  force S - -815.63562   -815.63562  -815.63562   -815.63562   -815.63562
 transv force H -  -34.63836    -34.63836   -34.63836    -34.63836    -34.63836
----------------------------------------------------------------------------

Figure 6.4: Boundary forces of the frame EST1
\includegraphics[width=90mm]{joonised/raamn1Summoe.eps}

Testing a static equilibrium for the frame

Consider next a static equilibrium of the frame shown in Fig. 6.4. Let us project the forces onto the X-axis,

$\displaystyle \begin{array}{ccl}
\Sigma X = 0; & & 55.36164 + 34.63836 - 90 = 0.0 % {{\;}=\hspace*{-1pt}?{\;}} 0 \vspace*{2mm} \\
\end{array}$     (6.6)
and onto the Z-axis,

$\displaystyle \begin{array}{ccl}
\Sigma Z = 0; & & - 904.3644 - 815.6356 + 6\cdot20 + 2\cdot 800 = 0.0
\end{array}$     (6.7)

We now write the equation of the sum of the moments and the moments of the forces acting about point 3 shown in Fig. 6.4:

$\displaystyle \Sigma M_{3} = 0;\qquad -154.7333 - 904.3644\cdot 6.0 + 55.36164\cdot 2.5 + 800\cdot 0.0334392 \qquad \qquad$      
$\displaystyle + 800\cdot (6.0 + 0.0334392) + 20\cdot 6.0\cdot (3 + 0.0334392)+ ...
...6\cdot 10^{-4}{\,}\mathrm{kN}\hspace*{-2pt}\cdot\hspace*{-2pt}\mathrm{m} \qquad$     (6.8)

The calculations with equations (6.6), (6.7), and (6.8) have verified the static equilibrium of the frame.

Figure 6.5: Elements of the frame EST1
\includegraphics[width=0.70\textwidth]{joonised/yspESTframe1e.eps}



Figure 6.6: Sparsity pattern of matrix spA of the frame EST1
\includegraphics[width=0.72\textwidth]{joonised/yspESTframe1_spars.eps}


andres
2014-09-09