1. Input data for the GNU Octave program spESTbeamLaheWFI.m are shown in excerpts from the program: element and nodal loads - excerpt 3.10; nodal coordinates - excerpt 3.11; element properties, topology and hinges - excerpt 3.12.
Number_of_beam_nodes=5 Number_of_elements=4 Number_of_support_reactions=5 spNNK=8*Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Displacements and forces calculated on parts of the element 'Nmitmeks'. Nmitmeks=5 Lp=24.0; # graphics axis # --- Element properties ---
EI=20000 # kN/m^2 GA=1.0*10^15 F1=60; F2=40; F3=80; qz=12.0;
baasi0=EI/8.0 # scaling multiplier for displacements #baasi0=1.0;
# ---- load variants -----
load_variant=1 #load_variant=2 #load_variant=3 koormusvariant=load_variant #koormusvariant=2 #koormusvariant=3
switch (koormusvariant) case{1} # disp(' Load variant 1 ') #disp(' Element load in local coordinates ') # Uniformly distributed load in local coordinate z direction LoadsqONelement=4; esQkoormus=zeros(LoadsqONelement,3,ElementideArv);
esQkoormus(1,1:3,1)=[qz 0.0 8.0]; esQkoormus(1,1:3,2)=[qz 0.0 8.0]; esQkoormus(1,1:3,3)=[qz 0.0 6.0]; esQkoormus(1,1:3,4)=[qz 0.0 2.0];
# Point load in local coordinate z direction LoadsF_on_Element=5; # 2 - Fz, aFz (coordinate of the point of force Fz application) esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:2,1)=[0.0 8.0]; esFjoud(1,1:2,2)=[0.0 8.0]; esFjoud(2,1:2,2)=[0.0 8.0]; esFjoud(1,1:2,3)=[0.0 6.0]; esFjoud(1,1:2,4)=[0.0 2.0];
#disp(' Node forces in global coordinates ') #disp(' Node 1 load ') # sSolmF(forces,1,nodes); forces=[Fz; My] sSolmF = zeros(2,1,SolmedeArv);
#sSolmF(1,1,1)= 0.0 # force Fz #sSolmF(2,1,1)= 0.0 # force My #sSolmF(:,1,2)= 0.0 #sSolmF(:,1,3)= 0.0 #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0
# Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(2,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
case{2} disp(' Load variant 2 ') #disp(' Element load in local coordinates ') # Uniformly distributed load in local coordinate z direction LoadsqONelement=4; esQkoormus=zeros(LoadsqONelement,3,ElementideArv);
esQkoormus(1,1:3,1)=[0.0 0.0 8.0]; esQkoormus(1,1:3,2)=[0.0 0.0 8.0]; esQkoormus(1,1:3,3)=[0.0 0.0 6.0]; esQkoormus(1,1:3,4)=[0.0 0.0 2.0];
# Point load in local coordinate z direction LoadsF_on_Element=5; # 2 - Fz, aFz (coordinate of the point of force Fz application) esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:2,1)=[0.0 8.0]; esFjoud(1,1:2,2)=[F1 1.6]; esFjoud(2,1:2,2)=[F2 4.8]; esFjoud(1,1:2,3)=[0.0 6.0]; esFjoud(1,1:2,4)=[0.0 2.0];
#disp(' Node forces in global coordinates ') #disp(' Node 1 load ') # sSolmF(forces,1,nodes); forces=[Fz; My] sSolmF = zeros(2,1,SolmedeArv);
#sSolmF(1,1,1)= 0.0 # force Fz #sSolmF(2,1,1)= 0.0 # force My #sSolmF(:,1,2)= 0.0 #sSolmF(:,1,3)= 0.0 #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0
# Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(2,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
case{3} disp(' Load variant 3 ') #disp(' Element load in local coordinates ') # Uniformly distributed load in local coordinate z direction LoadsqONelement=4; esQkoormus=zeros(LoadsqONelement,3,ElementideArv);
esQkoormus(1,1:3,1)=[0.0 0.0 8.0]; esQkoormus(1,1:3,2)=[0.0 0.0 8.0]; esQkoormus(1,1:3,3)=[0.0 0.0 6.0]; esQkoormus(1,1:3,4)=[0.0 0.0 2.0];
# Point load in local coordinate z direction LoadsF_on_Element=5; # 2 - Fz, aFz (coordinate of the point of force Fz application) esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:2,1)=[0.0 8.0]; esFjoud(1,1:2,2)=[0.0 8.0]; esFjoud(2,1:2,2)=[0.0 8.0]; esFjoud(1,1:2,3)=[F3 3.6]; esFjoud(1,1:2,4)=[0.0 2.0];
#disp(' Node forces in global coordinates ') #disp(' Node 1 load ') # sSolmF(forces,1,nodes); forces=[Fz; My] sSolmF = zeros(2,1,SolmedeArv);
#sSolmF(1,1,1)= 0.0 # force Fz #sSolmF(2,1,1)= 0.0 # force My #sSolmF(:,1,2)= 0.0 #sSolmF(:,1,3)= 0.0 #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0
# Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(2,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
## otherwise disp(' No load variant cases ') endswitch ##
#========== # Nodal coordinates #========== krdn=[# x 0.0 ; # node 1 8.0 ; # node 2 16.0 ; # node 3 22.0 ; # node 4 24.0]; # node 5 #========== # #========== # Restrictions on support displacements (on - 1, off - 0) # Support No w fi #========== tsolm=[1 1 1 ; # node 1 2 1 0 ; # node 2 3 1 0 ; # node 3 4 1 0 ]; # node 4 #==========
# ------------- Element properties, topology and hinges --------- elasts=[# Element properties # n2 - end of the element # n1 - beginning of the element # N, Q, M - hinges at the end of the element # N, Q, M - hinges at the beginning of the element # EI GA 2 1 0 0 0 0; % element 1 EI GA 3 2 0 0 0 0; % element 2 EI GA 4 3 0 0 0 0; % element 3 EI GA 5 4 0 0 0 0]; % element 4 # 1 - hinge 'true' (shear, moment hinges) #
2. Assembling and solving the boundary problem equations (3.14), carried out by the function LaheBeamDFI(baasi0,Ntoerkts,esQkoormus,esFjoud, sSolmF,tsolm,tSiire, krdn,selem). The program has numbered the displacements and forces of the beam element ends as shown in Fig. 3.22. The unscaled initial parameter vectors of the elements are shown in excerpt 3.10 from the computing diary.
-- Scaling multiplier for displacements = 1/baasi0 --- ============================================================ Unscaled initial parameter vector Element w fi Q M No ------------------------------------------------------------ 1 +0.000e+00 +0.000e+00 -47.450 62.533 2 +0.000e+00 -2.933e-04 -49.650 66.933 3 +0.000e+00 +1.173e-03 -40.956 53.733 4 +0.000e+00 +3.133e-04 -24.000 24.000 ------------------------------------------------------------
The support reactions of the beam in global coordinates are shown in excerpt 3.11 from the computing diary.
Support reactions begin from row X: 33 =========================================== No X Node Cz <=> 1 Cy <=> 2 ------------------------------------------- 33 -4.745000e+01 1 1 34 +6.253333e+01 1 2 35 -9.820000e+01 2 1 36 -8.730556e+01 3 1 37 -5.504444e+01 4 1 --------------------------------------------
3. Output
Output of load case 1: the element displacements and forces determined by the transfer matrix are shown in excerpt 3.12 from the computing diary.
The shear force Q and the bending moment diagrams of the beam are shown in Fig. 3.23.
Testing a static equilibrium for the beam
Consider a static equilibrium of the beam shown in Fig. 3.23.
Let us project the forces onto the Z-axis:
#================================================================================= Element displacements and forces determined by transfer matrix #================================================================================= Displacements and forces of element no 1 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 2.546e-03 5.673e-03 5.560e-03 2.321e-03 1.388e-17 rotation fi - 0.000e+00 -2.375e-03 -1.135e-03 1.264e-03 2.364e-03 -2.933e-04 shear force Q - 47.450 28.250 9.050 -10.150 -29.350 -48.550 moment force M - -62.533 -1.973 27.867 26.987 -4.613 -66.933 ---------------------------------------------------------------------------- Displacements and forces of element no 2 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 3.222e-03 7.137e-03 7.475e-03 3.898e-03 -1.388e-17 rotation fi - -2.933e-04 -2.880e-03 -1.569e-03 1.182e-03 2.915e-03 1.173e-03 shear force Q - 49.650 30.450 11.250 -7.950 -27.150 -46.350 moment force M - -66.933 -2.853 30.507 33.147 5.067 -53.733 ---------------------------------------------------------------------------- Displacements and forces of element no 3 of length 6.000 m The element is divided into 5 parts displacement w - 0.000e+00 -1.152e-05 1.033e-03 1.461e-03 8.448e-04 6.939e-18 rotation fi - 1.173e-03 -7.491e-04 -7.595e-04 1.053e-04 8.085e-04 3.133e-04 shear force Q - 40.956 26.556 12.156 -2.244 -16.644 -31.044 moment force M - -53.733 -13.227 10.000 15.947 4.613 -24.000 ---------------------------------------------------------------------------- Displacements and forces of element no 4 of length 2.000 m The element is divided into 5 parts displacement w - 0.000e+00 -4.149e-05 4.117e-05 1.942e-04 3.793e-04 5.733e-04 rotation fi - 3.133e-04 -7.707e-05 -3.139e-04 -4.355e-04 -4.803e-04 -4.867e-04 shear force Q - 24.000 19.200 14.400 9.600 4.800 0.000 moment force M - -24.000 -15.360 -8.640 -3.840 -0.960 0.000 ----------------------------------------------------------------------------
Forces of element 1 at x = 4.000 displacement w - 6.10667e-03 rotation fi - 7.33333e-05 shear force Q - -0.55000 moment force M - 31.26667 ----------------------------------- Forces of element 2 at x = 1.599 displacement w - 3.22218e-03 rotation fi - -2.88000e-03 shear force Q - 30.45001 moment force M - -2.85336 ----------------------------------- Forces of element 2 at x = 4.000 displacement w - 7.86667e-03 rotation fi - -2.20000e-04 shear force Q - 1.65000 moment force M - 35.66667 ----------------------------------- Forces of element 2 at x = 4.800 displacement w - 7.47520e-03 rotation fi - 1.18187e-03 shear force Q - -7.95000 moment force M - 33.14667 ----------------------------------- Forces of element 3 at x = 3.600 displacement w - 1.46112e-03 rotation fi - 1.05333e-04 shear force Q - -2.24444 moment force M - 15.94667 -----------------------------------
Output of load case 2: the initial parameter vector and support reactions.
-- Scaling multiplier for displacements = 1/baasi0 --- ============================================================ Unscaled initial parameter vector Element w fi Q M No ------------------------------------------------------------ 1 +0.000e+00 +0.000e+00 10.752 -28.672 2 +0.000e+00 -5.734e-03 -65.536 57.344 3 +0.000e+00 +4.506e-03 -7.509 45.056 4 +0.000e+00 -2.253e-03 0.000 0.000 ------------------------------------------------------------
The support reactions of the beam in global coordinates are shown in excerpt 3.14 from the computing diary.
Support reactions begin from row X: 33 =========================================== No X Node Cz <=> 1 Cy <=> 2 ------------------------------------------- 33 +1.075200e+01 1 1 34 -2.867200e+01 1 2 35 -7.628800e+01 2 1 36 -4.197333e+01 3 1 37 +7.509333e+00 4 1 --------------------------------------------
The element displacements and forces determined by the transfer matrix are shown in excerpt 3.15 from the computing diary.
The shear force Q and the bending moment diagrams of the beam are shown in Fig. 3.24.
Testing a static equilibrium for the beam
Consider next a static equilibrium of the beam shown in Fig. 3.24.
Let us project the forces onto the Z-axis:
#================================================================================= Element displacements and forces determined by transfer matrix #================================================================================= Displacements and forces of element no 1 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 -1.468e-03 -4.404e-03 -6.606e-03 -5.872e-03 -6.939e-18 rotation fi - 0.000e+00 1.606e-03 1.835e-03 6.881e-04 -1.835e-03 -5.734e-03 shear force Q - -10.752 -10.752 -10.752 -10.752 -10.752 -10.752 moment force M - 28.672 11.469 -5.734 -22.938 -40.141 -57.344 ---------------------------------------------------------------------------- Displacements and forces of element no 2 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 1.061e-02 1.718e-02 1.654e-02 8.916e-03 2.776e-17 rotation fi - -5.734e-03 -6.128e-03 -1.972e-03 2.892e-03 5.904e-03 4.506e-03 shear force Q - 65.536 5.536 5.536 -34.464 -34.464 -34.464 moment force M - -57.344 47.514 56.371 65.229 10.086 -45.056 ---------------------------------------------------------------------------- Displacements and forces of element no 3 of length 6.000 m The element is divided into 5 parts displacement w - 0.000e+00 -3.893e-03 -5.190e-03 -4.542e-03 -2.595e-03 -6.939e-18 rotation fi - 4.506e-03 2.073e-03 1.802e-04 -1.171e-03 -1.982e-03 -2.253e-03 shear force Q - 7.509 7.509 7.509 7.509 7.509 7.509 moment force M - -45.056 -36.045 -27.034 -18.022 -9.011 0.000 ---------------------------------------------------------------------------- Displacements and forces of element no 4 of length 2.000 m The element is divided into 5 parts displacement w - 0.000e+00 9.011e-04 1.802e-03 2.703e-03 3.604e-03 4.506e-03 rotation fi - -2.253e-03 -2.253e-03 -2.253e-03 -2.253e-03 -2.253e-03 -2.253e-03 shear force Q - 0.000 0.000 0.000 0.000 0.000 0.000 moment force M - 0.000 0.000 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------
Forces of element 1 at x = 4.000 displacement w - -5.73440e-03 rotation fi - 1.43360e-03 shear force Q - -10.75200 moment force M - -14.33600 ----------------------------------- Forces of element 2 at x = 1.599 displacement w - 1.06081e-02 rotation fi - -6.12762e-03 shear force Q - 65.53600 moment force M - 47.51353 -----------------------------------
Forces of element 2 at x = 4.000 displacement w - 1.78347e-02 rotation fi - 3.71200e-04 shear force Q - 5.53600 moment force M - 60.80000 ----------------------------------- Forces of element 2 at x = 4.800 displacement w - 1.65413e-02 rotation fi - 2.89178e-03 shear force Q - -34.46400 moment force M - 65.22880 ----------------------------------- Forces of element 3 at x = 3.600 displacement w - -4.54164e-03 rotation fi - -1.17146e-03 shear force Q - 7.50933 moment force M - -18.02240 -----------------------------------
Output of load case 3: the initial parameter vector and support reactions.
-- Scaling multiplier for displacements = 1/baasi0 --- ============================================================ Unscaled initial parameter vector Element w fi Q M No ------------------------------------------------------------ 1 +0.000e+00 +0.000e+00 -2.016 5.376 2 +0.000e+00 +1.075e-03 6.048 -10.752 3 +0.000e+00 -4.301e-03 -38.272 37.632 4 +0.000e+00 +7.334e-03 0.000 0.000 ------------------------------------------------------------
The support reactions of the beam in global coordinates are shown in excerpt 3.17 from the computing diary.
Support reactions begin from row X: 33 =========================================== No X Node Cz <=> 1 Cy <=> 2 ------------------------------------------- 33 -2.016000e+00 1 1 34 +5.376000e+00 1 2 35 +8.064000e+00 2 1 36 -4.432000e+01 3 1 37 -4.172800e+01 4 1 --------------------------------------------
The element displacements and forces determined by the transfer matrix are shown in excerpt 3.18 from the computing diary.
The shear force Q and the bending moment diagrams of the beam are shown in Fig. 3.25.
Testing a static equilibrium for the beam
Consider now a static equilibrium of the beam shown in Fig. 3.25.
Let us project the forces onto the Z-axis:
#================================================================================= Element displacements and forces determined by transfer matrix #================================================================================= Displacements and forces of element no 1 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 2.753e-04 8.258e-04 1.239e-03 1.101e-03 -1.735e-18 rotation fi - 0.000e+00 -3.011e-04 -3.441e-04 -1.290e-04 3.441e-04 1.075e-03 shear force Q - 2.016 2.016 2.016 2.016 2.016 2.016 moment force M - -5.376 -2.150 1.075 4.301 7.526 10.752 ---------------------------------------------------------------------------- Displacements and forces of element no 2 of length 8.000 m The element is divided into 5 parts displacement w - 0.000e+00 -2.202e-03 -4.542e-03 -5.780e-03 -4.679e-03 0.000e+00 rotation fi - 1.075e-03 1.548e-03 1.247e-03 1.720e-04 -1.677e-03 -4.301e-03 shear force Q - -6.048 -6.048 -6.048 -6.048 -6.048 -6.048 moment force M - 10.752 1.075 -8.602 -18.278 -27.955 -37.632 ---------------------------------------------------------------------------- Displacements and forces of element no 3 of length 6.000 m The element is divided into 5 parts displacement w - 0.000e+00 5.965e-03 1.133e-02 1.280e-02 8.200e-03 -3.469e-18 rotation fi - -4.301e-03 -5.181e-03 -3.305e-03 1.326e-03 5.832e-03 7.334e-03 shear force Q - 38.272 38.272 38.272 38.272 -41.728 -41.728 moment force M - -37.632 8.294 54.221 100.147 50.074 0.000 ---------------------------------------------------------------------------- Displacements and forces of element no 4 of length 2.000 m The element is divided into 5 parts displacement w - 0.000e+00 -2.934e-03 -5.868e-03 -8.801e-03 -1.174e-02 -1.467e-02 rotation fi - 7.334e-03 7.334e-03 7.334e-03 7.334e-03 7.334e-03 7.334e-03 shear force Q - 0.000 0.000 0.000 0.000 0.000 0.000 moment force M - 0.000 0.000 0.000 0.000 0.000 0.000 ----------------------------------------------------------------------------
Forces of element 1 at x = 4.000 displacement w - 1.07520e-03 rotation fi - -2.68800e-04 shear force Q - 2.01600 moment force M - 2.68800 -----------------------------------
Forces of element 2 at x = 1.599 displacement w - -2.20201e-03 rotation fi - 1.54829e-03 shear force Q - -6.04800 moment force M - 1.07521 ----------------------------------- Forces of element 2 at x = 4.000 displacement w - -5.37600e-03 rotation fi - 8.06400e-04 shear force Q - -6.04800 moment force M - -13.44000 ----------------------------------- Forces of element 2 at x = 4.800 displacement w - -5.78028e-03 rotation fi - 1.72032e-04 shear force Q - -6.04800 moment force M - -18.27840 ----------------------------------- Forces of element 3 at x = 3.600 displacement w - 1.27955e-02 rotation fi - 1.32557e-03 shear force Q - -41.72800 moment force M - 100.14720 -----------------------------------
===================================== Minimum-maximum bending moments ===================================== No x Mq Mmax Min -------------------------------------
1 0.00 -62.53 -33.86 -67.91 2 0.80 -28.41 -8.34 -32.18 3 1.60 -1.97 9.50 -4.12 4 2.40 16.79 19.65 16.25 5 3.20 27.87 28.94 22.13 6 4.00 31.27 33.95 16.93 7 4.80 26.99 31.29 4.05 8 5.60 15.03 20.94 -16.51 9 6.40 -4.61 2.91 -44.75 10 7.20 -31.93 -22.79 -80.68 11 8.00 -66.93 -56.18 -124.28 12 8.80 -31.05 -25.14 -35.97 13 9.60 -2.85 45.74 -2.85 14 10.40 17.67 69.61 13.90 15 11.20 30.51 86.88 21.91 16 12.00 35.67 96.47 22.23 17 12.80 33.15 98.38 14.87 18 13.60 22.95 60.60 -0.17 19 14.40 5.07 15.15 -22.89 20 15.20 -20.49 -20.49 -70.77 21 16.00 -53.73 -53.73 -136.42 22 16.60 -31.32 -31.32 -86.54 23 17.20 -13.23 -4.93 -49.27 24 17.80 0.55 31.80 -30.99 25 18.40 10.00 64.22 -17.03 26 19.00 15.13 92.32 -7.39 27 19.60 15.95 116.09 -2.08 28 20.20 12.44 87.55 -1.08 29 20.80 4.61 54.69 -4.40 30 21.40 -7.53 17.50 -12.04 31 22.00 -24.00 -24.00 -24.00 32 24.00 0.00 0.00 0.00 ----------------------------------
andres