Let us assume that the cross-sectional area of the upper side members
where
, the cross-sectional area of the bottom side members
and
that of the diagonal members
.
The modulus of elasticity
.
Problem Statement. To solve the problem, we use the EST method. The solving procedure includes the following.
1. Input data for the GNU Octave program spESTtrussLaheWFI.m are shown in excerpts from the program: element and nodal loads - excerpt 3.13; nodal coordinates - excerpt 3.14; element properties, topology and hinges - excerpt 3.15.
Number_of_truss_nodes=10 Number_of_elements=17 Number_of_support_reactions=4 d=3.0; # panel length Npanel=4; # panel number L=12.0; # truss span H=2.25; # truss height spNNK=8*Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Lp=12.0; # graphics axis # --- Element properties ---
E=2.1E+11 # Pa A=9.58E-04 # A=9.58 cm2 EAa=Aa*E; EAy=Ay*E; EAd=Ad*E;
baasi0=EAy/d # scaling multiplier for displacements
#disp(' Node forces in global coordinates ') # sSolmF(forces,1,nodes); forces=[Fx; Fz] sSolmF = zeros(2,1,SolmedeArv);
sSolmF = zeros(2,1,SolmedeArv); #sSolmF(:,1,1)=0.0 sSolmF(2,1,2)=Fz/2; # s2F(2,1)=F/2; #sSolmF(:,1,3)=0.0 sSolmF(2,1,4)=Fz; # s4F(2,1)=F; #sSolmF(:,1,5)=0.0 sSolmF(2,1,6)=Fz; # s6F(2,1)=F; #sSolmF(:,1,7)=0.0 sSolmF(2,1,8)= Fz; # s8F(2,1)=F; #sSolmF(:,1,9)=0.0 sSolmF(2,1,10)=Fz/2; # s10F(2,1)=F/2;
# Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(2,1,SolmedeArv);
#tSiire(1,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(1,1,9)= 0.0 #tSiire(2,1,9)= 0.0
#========== # Nodal coordinates #==========
krdn=[# x z 0.0 0.0 ; % node 1 0.0 -2.25 ; % node 2 3.0 -0.75 ; % node 3 3.0 -2.25 ; % node 4 6.0 -1.5 ; % node 5 6.0 -2.25 ; % node 6 9.0 -0.75 ; % node 7 9.0 -2.25 ; % node 8 12.0 0.0 ; % node 9 12.0 -2.25]; % node 10
#========== # #========== # Restrictions on support displacements (on - 1, off - 0) # Support No u w fi #========== tsolm=[1 1 1 0; % node 1 9 1 1 0]; % node 9 #==========
# ------------- Element properties, topology --------- elasts=[# Element properties # n2 - end of the element # n1 - beginning of the element # A E;
2 1 Ad E; % element 1 3 1 Aa E; % element 2 3 2 Ad E; % element 3 4 2 Ay E; % element 4 4 3 Ad E; % element 5 6 4 Ay E; % element 6 5 4 Ad E; % element 7 5 3 Aa E; % element 8 6 5 Ad E; % element 9 8 6 Ay E; % element 10 8 5 Ad E; % element 11 7 5 Aa E; % element 12 8 7 Ad E; % element 13 10 8 Ay E; % element 14 10 7 Ad E; % element 15 9 7 Aa E; % element 16 10 9 Ad E]; % element 17
2. Assembling and solving the boundary problem equations (3.21), carried out by the function LaheTrussDFI(baasi0,Ntoerkts,esQkoormus,esFjoud,sSolmF,tsolm,tSiire, krdn,selem).The program has numbered the displacements and forces of the truss element ends as shown in Fig. 3.31. The unscaled initial parameter vectors of the elements are shown in excerpt 3.19 from the computing diary.
-- Scaling multiplier for displacements = 1/baasi0 --- ============================================================= Unscaled initial parameter vector (Sign Convention 2) Element u w fi N No -------------------------------------------------------------- 1 0.000e+00 -0.000e+00 -2.056e-04 15142.038 2 0.000e+00 0.000e+00 -5.898e-04 36522.315 3 4.768e-04 -8.061e-05 -5.458e-04 -20442.218 4 4.625e-04 1.411e-04 -6.166e-04 18284.075 5 -1.906e-03 -1.022e-04 -2.467e-04 13713.056 6 2.677e-04 1.991e-03 -4.938e-04 25136.301 7 7.426e-04 1.866e-03 -4.740e-04 -7063.113 8 -5.614e-04 1.824e-03 -4.878e-04 17675.521 9 -3.435e-03 -2.132e-21 -1.083e-19 12000.000 10 7.911e-20 3.472e-03 4.938e-04 25136.301 11 -8.331e-04 3.332e-03 4.740e-04 -7063.113 12 8.331e-04 3.332e-03 4.878e-04 17675.521 13 -1.906e-03 1.022e-04 2.467e-04 13713.056 14 -2.677e-04 1.991e-03 6.166e-04 18284.075 15 -7.608e-04 1.750e-03 5.458e-04 -20442.218 16 5.614e-04 1.824e-03 5.898e-04 36522.315 17 -0.000e+00 0.000e+00 2.056e-04 15142.038 ---------------------------------------------------------------
The support reactions of the truss in global coordinates are shown in excerpt 3.20 from the computing diary.
Support reactions begin from row X: 33 =========================================== No X Node Cx <=> 1 Cz <=> 2 ------------------------------------------- 137 +3.543185e+04 1 1 138 -2.400000e+04 1 2 139 -3.543185e+04 9 1 140 -2.400000e+04 9 2 --------------------------------------------
3. Output
Results of computation. The values of displacements and forces of the truss members are presented in Table 3.1.
The verifiable results have been obtained with the finite element method 3.4 (FEM).
The displacements determined by the EST method are ,
(in local coordinates),
these determined by the FEM are
,
(in global coordinates). The displacements
,
of
members 1, 5, 9, 13, and 17 compared with the displacements
,
of nodes 1, 2, 3, .., 10 are shown in
Table 3.1.
The forces and displacements determined by the EST method are of the same value as these determined by the FEM.
Testing a static equilibrium for the truss
Consider next a static equilibrium of the truss shown in Fig. 3.32.
Let us project the forces onto the X-axis,
The calculations with equations (3.22), (3.23), and (3.24) have verified the static equilibrium of the truss.
Member | EST method (Sign Convention 1) | FEM (global coordinates) | ||||
No | u* | w* | N | u | w | N |
![]() |
[m] | [m] | [N] | [m] | [m] | [kN] |
1 begin. | 0.000e+00 | 0.000e+00 | -15142.038 | 0.000e+00 | 0.000e+00 | |
1 end | -1.411e-04 | 4.625e-04 | -15142.038 | 4.625e-02 | 1.411e-02 | -15.1420 |
2 begin. | -0.000e+00 | -0.000e+00 | -36522.315 | |||
2 end | -5.614e-04 | 1.824e-03 | -36522.315 | -36.5223 | ||
3 begin. | 4.768e-04 | -8.061e-05 | 20442.218 | |||
3 end | 7.608e-04 | 1.750e-03 | 20442.218 | 20.4422 | ||
4 begin. | 4.625e-04 | 1.411e-04 | -18284.075 | |||
4 end | 2.677e-04 | 1.991e-03 | -18284.075 | -18.2841 | ||
5 begin. | -1.906e-03 | -1.022e-04 | -13713.056 | -1.022e-02 | 1.906e-01 | |
5 end | -1.991e-03 | 2.677e-04 | -13713.056 | 2.677e-02 | 1.991e-01 | -13.7131 |
6 begin. | 2.677e-04 | 1.991e-03 | -25136.301 | |||
6 end | 3.056e-20 | 3.472e-03 | -25136.301 | -25.1363 | ||
7 begin. | 7.426e-04 | 1.866e-03 | 7063.113 | |||
7 end | 8.331e-04 | 3.332e-03 | 7063.113 | 7.0631 | ||
8 begin. | -5.614e-04 | 1.824e-03 | -17675.521 | |||
8 end | -8.331e-04 | 3.332e-03 | -17675.521 | -17.6755 | ||
9 begin. | -3.435e-03 | 1.540e-21 | -12000.000 | -1.133e-16 | 3.435e-01 | |
9 end | -3.472e-03 | 3.056e-20 | -12000.000 | -1.196e-16 | 3.472e-01 | -12.0000 |
10 begin. | 3.056e-20 | 3.472e-03 | -25136.301 | |||
10 end | -2.677e-04 | 1.991e-03 | -25136.301 | -25.1363 | ||
11 begin. | -8.331e-04 | 3.332e-03 | 7063.113 | |||
11 end | -7.426e-04 | 1.866e-03 | 7063.113 | 7.0631 | ||
12 begin. | 8.331e-04 | 3.332e-03 | -17675.521 | |||
12 end | 5.614e-04 | 1.824e-03 | -17675.521 | -17.6755 | ||
13 begin. | -1.906e-03 | 1.022e-04 | -13713.056 | 1.022e-02 | 1.906e-01 | |
13 end | -1.991e-03 | -2.677e-04 | -13713.056 | -2.677e-02 | 1.991e-01 | -13.7131 |
14 begin. | -2.677e-04 | 1.991e-03 | -18284.075 | |||
14 end | -4.625e-04 | 1.411e-04 | -18284.075 | -18.2841 | ||
15 begin. | -7.608e-04 | 1.750e-03 | 20442.218 | |||
15 end | -4.768e-04 | -8.061e-05 | 20442.218 | 20.4422 | ||
16 begin. | 5.614e-04 | 1.824e-03 | -36522.315 | |||
16 end | 0.000e+00 | 0.000e+00 | -36522.315 | -36.5223 | ||
17 begin. | 0.000e+00 | 0.000e+00 | -15142.038 | 0.000e+00 | 0.000e+00 | |
17 end | -1.411e-04 | -4.625e-04 | -15142.038 | -4.625e-02 | 1.411e-02 | -15.1420 |