Problem Solving. To solve the problem, the EST method is used. The solving procedure includes the following.
1. Input data for the GNU Octave program spESTGerberBeamQM.m are shown in excerpts from the program: element and nodal loads - excerpt 4.4; nodal coordinates - excerpt 4.5; element properties, topology and hinges - excerpt 4.6.
Number_of_frame_nodes=8 Number_of_elements=7 Number_of_support_reactions=5 spNNK=4*Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Forces are calculated on parts ("Nmitmeks") of the element Nmitmeks=4 Lp=31.0; # graphics axes # --- Element loads ---
F1=20; F2=40; F3=30; F4=100; F5=20; qz=8.0; ## ---- load variants ----- load_variant=1 #load_variant=2 #load_variant=3
switch (koormusvariant) case{1} disp(' Load variant 1 ')
#Element load in local coordinates # qz qA qL # Uniformly distributed load in local coordinate z direction LoadsqONelement=4; esQkoormus=zeros(LoadsqONelement,3,ElementideArv);
esQkoormus(1,1:3,1)=[0.0 0.0 4.0]; esQkoormus(1,1:3,2)=[qz 0.0 8.0]; esQkoormus(1,1:3,3)=[qz 0.0 2.0]; esQkoormus(1,1:3,4)=[qz 0.0 6.0]; esQkoormus(1,1:3,5)=[0.0 0.0 2.0]; esQkoormus(1,1:3,6)=[0.0 0.0 8.0]; esQkoormus(1,1:3,7)=[0.0 0.0 1.0];
# Point load in local coordinate z direction kN # Fz, aF (coordinate of the point of force application) LoadsF_on_Element=5; esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:2,1)=[0.0 4.0]; esFjoud(1,1:2,2)=[F2 4.0]; esFjoud(1,1:2,3)=[0.0 2.0]; esFjoud(1,1:2,4)=[F3 2.0]; esFjoud(1,1:2,5)=[0.0 2.0]; esFjoud(1,1:2,6)=[F4 4.0]; esFjoud(1,1:2,7)=[0.0 1.0];
#Node forces in global coordinates # sSolmF(forces,1,nodes); forces=[Fz; My] sSolmF = zeros(2,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0; sSolmF(1,1,2)= 20.0; #sSolmF(:,1,3)= 0.0; #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0 #sSolmF(:,1,6)= 0.0 #sSolmF(:,1,7)= 0.0 sSolmF(1,1,8)= 20.0; #%disp(' Kustuta ') s1F(:,:) = sSolmF(:,1,1); s2F(:,:) = sSolmF(:,1,2); s3F(:,:) = sSolmF(:,1,3); s4F(:,:) = sSolmF(:,1,4); s5F(:,:) = sSolmF(:,1,5); s6F(:,:) = sSolmF(:,1,6); s7F(:,:) = sSolmF(:,1,7); s8F(:,:) = sSolmF(:,1,8);
#s1F(1,1,1)=0.0; # force Fz #s1F(2,1,1)=0.0; # force My
case{2} disp(' Load variant 2 ') case{3} disp(' Load variant 3 ') # otherwise disp(' No load variant cases ') endswitch
#========== # Nodal coordinates #========== krdn=[# x 0.0 ; # node 1 4.0 ; # node 2 12.0 ; # node 3 14.0 ; # node 4 20.0 ; # node 5 22.0 ; # node 6 30.0 ; # node 7 31.0 ]; # node 8 #========== # Restrictions on support displacements (on - 1, off - 0) # Support No w fi #========== tsolm=[1 1 1 ; # node 1 3 1 0 ; # node 2 6 1 0 ; # node 3 7 1 0 ]; # node 4 #==========
# ------------- Element properties, topology and hinges --------- elasts=[# Element # n2 - end of the element # n1 - beginning of the element # N, Q, M - hinges at the end of the element # N, Q, M - hinges at the beginning of the element 2 1 0 1 0 0; % element 1 3 2 0 0 0 1; % element 2 4 3 0 1 0 0; % element 3 5 4 0 1 0 1; % element 4 6 5 0 0 0 1; % element 5 7 6 0 0 0 0; % element 6 8 7 0 0 0 0]; % element 7 # 1 - hinge 'true' (axial, shear, moment hinges) #
2. Assembling and solving the boundary problem equations (4.5), carried out by the function LaheGerberBeamQM(baasi0,Ntoerkts,esQkoormus,esFjoud,sSolmF,tsolm,tSiire, krdn,selem). The program has numbered the forces at element ends of the frame as shown in Fig. 4.8.
The initial parameter vectors of the elements are given in excerpt 4.4 from the computing diary.
============================= Initial parameter vector Element No Q M ----------------------------- 1 -59.000 236.000 2 -39.000 0.000 3 -60.000 104.000 4 -44.000 0.000 5 34.000 0.000 6 -56.000 68.000 7 -20.000 20.000 -----------------------------
Support reactions begin from X row: 29 ========================================== No X Node Cz <=> 1 Cy <=> 2 ------------------------------------------ 29 -5.900000e+01 1 1 30 2.360000e+02 1 2 31 -1.250000e+02 3 1 32 -9.000000e+01 6 1 33 -6.400000e+01 7 1 ------------------------------------------
Testing a static equilibrium for the Gerber beam EST
Consider next a static equilibrium of the beam shown in Figs. 4.7
and 4.8.
Let us project the forces onto the Z-axis:
3. Output: the forces determined by the transfer matrix are shown in excerpt 4.6 from the computing diary.
#======================================================================= Element forces determined by transfer matrix #======================================================================= Forces of element no 1 of length 4.000 m The element is divided into 4 parts shear force Q - 59.000 59.000 59.000 59.000 59.000 moment force M - -236.000 -177.000 -118.000 -59.000 0.000 ------------------------------------------------------------------- Forces of element no 2 of length 8.000 m The element is divided into 4 parts shear force Q - 39.000 23.000 -33.000 -49.000 -65.000 moment force M - 0.000 62.000 92.000 10.000 -104.000 ------------------------------------------------------------------- Forces of element no 3 of length 2.000 m The element is divided into 4 parts shear force Q - 60.000 56.000 52.000 48.000 44.000 moment force M - -104.000 -75.000 -48.000 -23.000 0.000 ------------------------------------------------------------------- Forces of element no 4 of length 6.000 m The element is divided into 4 parts shear force Q - 44.000 32.000 -10.000 -22.000 -34.000 moment force M - 0.000 57.000 66.000 42.000 0.000 ------------------------------------------------------------------- Forces of element no 5 of length 2.000 m The element is divided into 4 parts shear force Q - -34.000 -34.000 -34.000 -34.000 -34.000 moment force M - 0.000 -17.000 -34.000 -51.000 -68.000 ------------------------------------------------------------------- Forces of element no 6 of length 8.000 m The element is divided into 4 parts shear force Q - 56.000 56.000 -44.000 -44.000 -44.000 moment force M - -68.000 44.000 156.000 68.000 -20.000 ------------------------------------------------------------------- Forces of element no 7 of length 1.000 m The element is divided into 4 parts shear force Q - 20.000 20.000 20.000 20.000 20.000 moment force M - -20.000 -15.000 -10.000 -5.000 0.000 ------------------------------------------------------------------- Forces of element no 4 at x = 1.999999 shear force Q - 28.000 moment force M - 72.000 ------------------------------------- Forces of element no 2 at x = 3.999999 shear force Q - 7.000 moment force M - 92.000 ------------------------------------- Forces of element no 6 at x = 3.999999 shear force Q - 56.000 moment force M - 156.000 -------------------------------------
![]() [Bending moment diagram] ![]() [Shear force Q diagram] |
The bending moment and shear force Q diagrams of the Gerber beam EST are shown in Fig. 4.9.
In Fig. 4.10, the elements, and in Fig. 4.11, the sparsity pattern of matrix spA of the Gerber beam are shown.
The displacements can be computed with the
GNU Octave program spESTGerberBeamWFI.m.