We wish to compute the reactions, internal forces ,
,
, and
,
and draw influence line diagrams for the truss members 7, 8, 9, and 10.
Problem Solving.
To solve the problem, the EST method is employed.
For assembling and solving the boundary problem equation
1. Input data for this program are shown in excerpts from the program: element and nodal loads - excerpt 4.7; nodal coordinates - excerpt 4.8; topology and hinges - excerpt 4.9.
Number_of_truss_nodes=16 Number_of_elements=29 Number_of_support_reactions=3 spNNK=Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Lp=24.0; # graphics axes # --- Truss properties ---
d=3.0; # panel length Npanel=8; # number of panels L=24.0; # truss span H=4.0; # truss height jaotT=L/8;
# ---- load variants ----- load_variant=1; #load_variant=2 #load_variant=3
switch (koormusvariant) case{1} disp(' Load variant 1 ') # #========== mjNr1=5; # influence line diagram numbers mjNr2=2; mjNr3=4; mjNr4=7; mjNr5=9; #========== #========== # Node forces in global coordinates #========== VJoud=[# Fx Fz
0 0; # node 1 0 0; # node 2 0 5; # node 3 0 0; # node 4 0 10; # node 5 0 0; # node 6 0 4; # node 7 0 0; # node 8 0 8; # node 9 0 0; # node 10 0 0; # node 11 0 0; # node 12 0 4; # node 13 0 0; # node 14 0 8; # node 15 0 0]; # node 16
#========== # Unit load acting at nodes #========== YJoudS=[# Fx Fz
0 1; # node 1 0 0; # node 2 0 1; # node 3 0 0; # node 4 0 1; # node 5 0 0; # node 6 0 1; # node 7 0 0; # node 8 0 1; # node 9 0 0; # node 10 0 1; # node 11 0 0; # node 12 0 1; # node 13 0 0; # node 14 0 1; # node 15 0 1]; # node 16
# case{2} disp(' Load variant 2 ') # case{3} disp(' Load variant 3 ') # otherwise disp(' No load variant cases ') endswitch #
#========== # Nodal coordinates #========== krdn=[# x z
0.0 0.0; # node 1 3.0 -2.4; # node 2 3.0 0.0; # node 3 6.0 -3.6; # node 4 6.0 0.0; # node 5 9.0 -4.0; # node 6 9.0 0.0; # node 7 12.0 -4.0; # node 8 12.0 0.0; # node 9 15.0 -4.0; # node 10 15.0 0.0; # node 11 18.0 -3.6; # node 12 18.0 0.0; # node 13 21.0 -2.4; # node 14 21.0 0.0; # node 15 24.0 0.0]; # node 16
#========== # Restrictions on support displacements (on - 1, off - 0) # Support u w #========== tsolm=[# x z
1 1; # node 1 0 0; # node 2 0 0; # node 3 0 0; # node 4 0 0; # node 5 0 0; # node 6 0 0; # node 7 0 0; # node 8 0 0; # node 9 0 0; # node 10 0 0; # node 11 0 0; # node 12 0 0; # node 13 0 0; # node 14 0 0; # node 15 0 1]; # node 16
#========== #----- Element topology ------ #========== selemjl=[# n1 - beginning of the element # n2 - end of the element
1 2; # element 1 2 3; # element 2 1 3; # element 3 2 4; # element 4 2 5; # element 5 3 5; # element 6 4 5; # element 7 4 6; # element 8 5 6; # element 9 5 7; # element 10 6 7; # element 11 6 8; # element 12 6 9; # element 13 7 9; # element 14 8 9; # element 15 8 10; # element 16 9 10; # element 17 10 13; # element 18 9 11; # element 19 10 12; # element 20 10 11; # element 21 11 13; # element 22 12 13; # element 23 12 14; # element 24 13 14; # element 25 13 15; # element 26 14 15; # element 27 14 16; # element 28 15 16]; # element 29
The procedure for computing the internal forces in truss members is discussed in [Lah12].
3. Output: the internal forces of elements given in excerpt 4.7 from the computing diary.
========================================= Internal forces in truss members The last 3 forces are support reactions No N -----------------------------------------
1 -32.6157 2 5.0000 3 25.4686 4 -32.0864 5 5.5361 6 25.4686 7 7.9445 8 -30.0552 9 -1.7536 10 30.8438 11 4.0000 12 -31.8750 13 1.7187 14 30.8438 15 -0.0000 16 -31.8750 17 8.2813 18 -4.2189 19 26.9063 20 -24.5906 21 0.0000 22 26.9063 23 6.5000 24 -26.2525 25 1.4008 26 23.2811 27 8.0000 28 -29.8143 29 23.2811 30 0.0000 31 -20.3750 32 -18.6250
In excerpt 4.8 from the computing diary, the influence line ordinates are for the members belonging to the lower chord. The procedure for computing the influence line ordinates is discussed in [KW90] and [Lah12].
The influence line diagram of member 9 is shown in Fig. 4.13.
===================================================== Influence line x-coordinates ----------------------------------------------------- 0 3 6 9 12 15 18 21 24 -----------------------------------------------------
===================================================== Influence line ordinates The last 3 rows are for support reactions ----------------------------------------------------- 1 0.0000 -1.4007 -1.2006 -1.0005 -0.8004 -0.6003 -0.4002 -0.2001 0.0000 2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0000 1.0937 0.9375 0.7812 0.6250 0.4687 0.3125 0.1562 0.0000 4 0.0000 -0.6731 -1.3463 -1.1219 -0.8975 -0.6731 -0.4488 -0.2244 0.0000 5 0.0000 -0.6003 0.4002 0.3335 0.2668 0.2001 0.1334 0.0667 0.0000 6 0.0000 1.0937 0.9375 0.7812 0.6250 0.4687 0.3125 0.1562 0.0000 7 0.0000 0.1667 0.3333 0.2778 0.2222 0.1667 0.1111 0.0556 0.0000 8 0.0000 -0.6305 -1.2611 -1.0509 -0.8407 -0.6305 -0.4204 -0.2102 0.0000 9 0.0000 0.2604 0.5208 -0.6076 -0.4861 -0.3646 -0.2431 -0.1215 0.0000 10 0.0000 0.4688 0.9375 1.4063 1.1250 0.8438 0.5625 0.2813 0.0000 11 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 0.0000 -0.3750 -0.7500 -1.1250 -1.5000 -1.1250 -0.7500 -0.3750 0.0000 13 -0.0000 -0.1563 -0.3125 -0.4688 0.6250 0.4688 0.3125 0.1563 0.0000 14 0.0000 0.4688 0.9375 1.4063 1.1250 0.8438 0.5625 0.2813 0.0000 15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 16 0.0000 -0.3750 -0.7500 -1.1250 -1.5000 -1.1250 -0.7500 -0.3750 0.0000 17 0.0000 0.1563 0.3125 0.4688 0.6250 -0.4688 -0.3125 -0.1563 0.0000 18 0.0000 -0.1215 -0.2431 -0.3646 -0.4861 -0.6076 0.5208 0.2604 0.0000 19 0.0000 0.2813 0.5625 0.8438 1.1250 1.4063 0.9375 0.4688 0.0000 20 0.0000 -0.2102 -0.4204 -0.6305 -0.8407 -1.0509 -1.2611 -0.6305 0.0000 21 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 22 0.0000 0.2813 0.5625 0.8438 1.1250 1.4063 0.9375 0.4688 0.0000 23 0.0000 0.0556 0.1111 0.1667 0.2222 0.2778 0.3333 0.1667 0.0000 24 0.0000 -0.2244 -0.4488 -0.6731 -0.8975 -1.1219 -1.3463 -0.6731 0.0000 25 0.0000 0.0667 0.1334 0.2001 0.2668 0.3335 0.4002 -0.6003 0.0000 26 0.0000 0.1562 0.3125 0.4687 0.6250 0.7812 0.9375 1.0937 0.0000 27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 28 0.0000 -0.2001 -0.4002 -0.6003 -0.8004 -1.0005 -1.2006 -1.4007 0.0000 29 0.0000 0.1562 0.3125 0.4687 0.6250 0.7812 0.9375 1.0937 0.0000 30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 31 -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0.0000 32 0.0000 -0.1250 -0.2500 -0.3750 -0.5000 -0.6250 -0.7500 -0.8750 -1.0000 -----------------------------------------------------
The sparsity pattern of matrix spA of the polygonal truss is given in Fig. 4.14.
andres