We wish to compute the displacements, reactions, internal forces, and draw the axial force, shear force and bending moment diagrams.
Problem Solving. To solve the problem, we use the EST method. The solving procedure includes the following.
1. Input data for the GNU Octave program spESTframeLaheWFI.m are shown in excerpts from the program: element and nodal loads - excerpt 3.1; nodal coordinates - excerpt 3.2; element properties, topology and hinges - excerpt 3.3.
Number_of_frame_nodes=6 Number_of_elements=5 Number_of_support_reactions=8 spNNK=12*Number_of_elements+Number_of_support_reactions; Number_of_unknowns=spNNK Displacements and forces are calculated on parts ("Nmitmeks") of the element Nmitmeks=4 # --- Element properties ---
EIp=20000 # kN/m^2 EIr=40000 # kN/m^2 EAp=4.6*10^6 #EAp=4.6*10^15; EAr=6.8*10^6 #EAr=6.8*10^15; GAp=0.4*EAp GAr=0.4*EAr
baasi0=EIp/4 # scaling multiplier for displacements # baasi0=1.0; #Element load in local coordinates # qz qx qA qL # Uniformly distributed load in local coordinate z and x directions LoadsqONelement=4; esQkoormus=zeros(LoadsqONelement,4,ElementideArv);
esQkoormus(1,1:4,1)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,2)=[8.0 0.0 0.0 6.0]; esQkoormus(1,1:4,3)=[0.0 0.0 0.0 4.0]; esQkoormus(1,1:4,4)=[0.0 0.0 0.0 6.0]; esQkoormus(1,1:4,5)=[0.0 0.0 0.0 4.0];
# # Point load in local coordinate z and x directions kN # Fz, Fx, aF (coordinate of the point of force application) LoadsF_on_Element=5; esFjoud=zeros(LoadsF_on_Element,2,ElementideArv);
esFjoud(1,1:3,1)=[0.0 0.0 4.0]; esFjoud(1,1:3,2)=[0.0 0.0 6.0]; esFjoud(1,1:3,3)=[10.0 0.0 2.0]; esFjoud(1,1:3,4)=[0.0 0.0 6.0]; esFjoud(1,1:3,5)=[0.0 0.0 4.0];
# #Node forces in global coordinates # sSolmF(forces,1,nodes); forces=[Fx; Fz; My] sSolmF = zeros(3,1,SolmedeArv);
#sSolmF(:,1,1)= 0.0 #sSolmF(:,1,2)= 0.0 #sSolmF(:,1,3)= 0.0 #sSolmF(:,1,4)= 0.0 #sSolmF(:,1,5)= 0.0 #sSolmF(:,1,6)= 0.0
# #s1F(1,1,1)=0.0; # force Fz #s1F(2,1,1)=0.0; # force Fz #s1F(3,1,1)=0.0; # force My # Support shift - tSiire# # Support shift is multiplied by scaling multiplier tSiire = zeros(3,1,SolmedeArv);
#tSiire(:,1,1)= 0.0 #tSiire(2,1,1)= 0.01*baasi0 #tSiire(:,1,2)= 0.0 #tSiire(:,1,3)= 0.0 #tSiire(:,1,4)= 0.0 #tSiire(:,1,5)= 0.0
#========== # Nodal coordinates #========== krdn=[# x z 0.0 0.0; % node 1 0.0 -4.0; % node 2 6.0 0.0; % node 3 6.0 -4.0; % node 4 12.0 0.0; % node 5 12.0 -4.0]; % node 6 #========== # #========== # Restrictions on support displacements (on - 1, off - 0) # Support No u w fi #========== tsolm=[1 1 1 0; % node 1 3 1 1 1; % node 3 5 1 1 1]; % node 5 #==========
# ------------- Element properties, topology and hinges --------- elasts=[# Element properties # n2 - end of the element # n1 - beginning of the element # N, Q, M - hinges at the end of the element # N, Q, M - hinges at the beginning of the element # EIp EAp GAp 2 1 0 0 1 0 0 1; % element 1 EIr EAr GAr 4 2 0 0 0 0 0 1; % element 2 EIp EAp GAp 4 3 0 0 0 0 0 0; % element 3 EIr EAr GAr 6 4 0 0 1 0 0 0; % element 4 EIp EAp GAp 5 6 0 0 0 0 0 1]; % element 5 # 1 - hinge 'true' (axial, shear, moment hinges) #
2. Assembling and solving the boundary problem equations (3.1), carried out by the function LaheFrameDFIm(baasi0,Ntoerkts,esQkoormus,esFjoud, sSolmF,tsolm,tSiire, krdn,selem). The program has numbered the displacements at element ends of the frame as shown in Fig. 3.2 and forces at element ends of the frame as shown in Fig. 3.3.
The unscaled initial parameter vectors of the elements are shown in excerpt 3.1 from the computing diary.
-------- Scaling multiplier for displacements = 1/baasi0 -------- ============================================================================ Unscaled initial parameter vector Element u w fi N Q M No ---------------------------------------------------------------------------- 1 -0.000e+00 0.000e+00 8.881e-06 20.301 0.000 0.000 2 -3.552e-05 1.765e-05 -1.247e-03 0.000 -20.301 0.000 3 -0.000e+00 0.000e+00 0.000e+00 29.980 -10.033 11.622 4 -3.552e-05 2.607e-05 6.889e-04 -0.033 -2.281 13.684 5 -1.983e-06 3.549e-05 1.331e-05 -2.281 0.033 0.000 ----------------------------------------------------------------------------
The support reactions of the frame in global coordinates are shown in excerpt 3.2 from the computing diary.
Support reactions begin from row X: 61 =========================================== No X Node Cx <=> 1 Cz <=> 2 Cy <=> 3 ------------------------------------------- 61 -0.000000e+00 1 1 62 -2.030089e+01 1 2 63 -1.003327e+01 3 1 64 -2.997974e+01 3 2 65 +1.162223e+01 3 3 66 +3.327478e-02 5 1 67 +2.280630e+00 5 2 68 -1.330991e-01 5 3 -------------------------------------------
3. Output: the element displacements and forces determined by the transfer matrix.
#================================================================================= Element displacements and forces determined by transfer matrix #================================================================================= Displacements and forces of element no 1 of length 4.000 m The element is divided into 4 parts displacement u - 0.00000e+00 -4.41324e-06 -8.82647e-06 -1.32397e-05 -1.76529e-05 displacement w - 0.00000e+00 -8.88062e-06 -1.77612e-05 -2.66418e-05 -3.55225e-05 rotation fi - 8.88062e-06 8.88062e-06 8.88062e-06 8.88062e-06 8.88062e-06 normal force N - -20.30089 -20.30089 -20.30089 -20.30089 -20.30089 shear force Q - 0.00000 0.00000 0.00000 0.00000 0.00000 moment force M - 0.00000 0.00000 0.00000 0.00000 0.00000 ---------------------------------------------------------------------------- Displacements and forces of element no 2 of length 6.000 m The element is divided into 4 parts displacement u - -3.55225e-05 -3.55225e-05 -3.55225e-05 -3.55225e-05 -3.55225e-05 displacement w - 1.76529e-05 2.12539e-01 3.37647e+00 1.70839e+01 5.39892e+01 rotation fi - -1.24654e-03 -5.63176e-01 -4.49896e+00 -1.51836e+01 -3.59921e+01 normal force N - 0.00000 0.00000 0.00000 0.00000 0.00000 shear force Q - 20.30089 8.30089 -3.69911 -15.69911 -27.69911 moment force M - 0.00000 21.45134 24.90267 10.35401 -22.19465 ---------------------------------------------------------------------------- Displacements and forces of element no 3 of length 4.000 m The element is divided into 4 parts displacement u - 0.00000e+00 -6.51733e-06 -1.30347e-05 -1.95520e-05 -2.60693e-05 displacement w - 0.00000e+00 2.06945e-04 4.93338e-04 4.17024e-01 3.33263e+00 rotation fi - 0.00000e+00 -3.30279e-04 -1.58895e-04 -1.24949e+00 -4.99831e+00 normal force N - -29.97974 -29.97974 -29.97974 -29.97974 -29.97974 shear force Q - 10.03327 10.03327 0.03327 0.03327 0.03327 moment force M - -11.62223 -1.58895 8.44432 8.47760 8.51087 ---------------------------------------------------------------------------- Displacements and forces of element no 4 of length 6.000 m The element is divided into 4 parts displacement u - -3.55225e-05 -3.55151e-05 -3.55078e-05 -3.55004e-05 -3.54931e-05 displacement w - 2.60693e-05 -6.54442e-04 -7.57670e-04 -4.76041e-04 -1.98316e-06 rotation fi - 6.88865e-04 2.39865e-04 -8.08482e-05 -2.73276e-04 -3.37419e-04 normal force N - 0.03327 0.03327 0.03327 0.03327 0.03327 shear force Q - 2.28063 2.28063 2.28063 2.28063 2.28063 moment force M - -13.68378 -10.26284 -6.84189 -3.42095 0.00000 ---------------------------------------------------------------------------- Displacements and forces of element no 5 of length 4.000 m The element is divided into 4 parts displacement u - -1.98316e-06 -1.48737e-06 -9.91578e-07 -4.95789e-07 4.23516e-22 displacement w - 3.54931e-05 2.24605e-05 1.10916e-05 3.05019e-06 3.38813e-21 rotation fi - 1.33099e-05 1.24780e-05 9.98244e-06 5.82309e-06 -1.69407e-21 normal force N - 2.28063 2.28063 2.28063 2.28063 2.28063 shear force Q - -0.03327 -0.03327 -0.03327 -0.03327 -0.03327 moment force M - 0.00000 -0.03327 -0.06655 -0.09982 -0.13310 ----------------------------------------------------------------------------
![]() |
In Figs. 3.4 and 3.5, the values in brackets are determined with the axial stiffness ![]()
The values without brackets are calculated with the axial stiffness
|
The shear force Q and the axial force N diagrams of the two-span frame are shown in Fig. 3.5.
Testing a static equilibrium for the frame
Consider a static equilibrium of the frame shown in Fig. 3.6.
When projecting the forces onto the X-axis,
We now write equation (3.4) of the sum of the moments and the moments of the forces acting about point a shown in Fig. 3.6:
In Fig. 3.7, the elements, and in Fig. 3.8, the sparsity pattern of matrix spA of the two-span frame are shown.
andres