2.2.1 Compatibility conditions at beam joints

The beam considered is exposed to a shear force and bending moment, and accordingly has the deflection $w$ and slope $\varphi$. The two beam elements in Fig. 2.7 have a rigid connection:

Figure 2.7: Compatibility at rigid joint T2

\begin{picture}(50,38)
\centering
\includegraphics[width=45mm]{joonised/solmT2.eps}
\end{picture}



$\displaystyle \left[ \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right]
\lef...
... 2\right)}_{A} \\
\varphi^{\left( 2\right) }_{A}
\end{array}\right] = 0
\qquad$     (2.26)

or
$\displaystyle \mathbf{I_{2\times 2}}\cdot \mathbf{v^{\left( 1\right) }_{L}} - \mathbf{I_{2\times 2}}\cdot \mathbf{v^{\left( 2\right) }_{A}} = 0$     (2.27)

where $\mathbf{I_{2\times 2}}$ is a unit matrix.

In Fig. 2.8, the two beam elements have a hinged connection:

Figure 2.8: Compatibility at pin joint T1

\begin{picture}(50,38)
\centering
\includegraphics[width=45mm]{joonised/solmT1.eps}
\end{picture}


$\displaystyle \left[ \begin{array}{cc}
1 & 0
\end{array} \right]
\left[\begin{a...
... 2\right)}_{A} \\
\varphi^{\left( 2\right) }_{A}
\end{array}\right] = 0
\qquad$     (2.28)

or
$\displaystyle \mathbf{T^{o}_{1}}\cdot \mathbf{v^{\left( 1\right) }_{L}} - \mathbf{T^{o}_{2}}\cdot \mathbf{v^{\left( 2\right) }_{A}} = 0$     (2.29)

        

andres
2014-09-09