C. Põhivalemid

Esitame õhukeseseinalise tala painde ja takistatud väände ülekandevõrrandid maatrikskujul:
$\displaystyle \mathbf{Z_{L}\left( x\right) } = \mathbf{U}\bm{\cdot}\mathbf{Z_{A}} + \mathbf{\stackrel{\rm\circ}{Z}}$     (C.1)
kus $ \mathbf{Z_{A}}$, $ \mathbf{Z_{L}}$ on vastavalt varda alguses ja lõpus olevad siirded, paindenurgad, põikjõud, paindemomendid, väändenurgad ja väändemomendid.
$\displaystyle \mathbf{Z_{A}} =
\left[\begin{array}{c}
w_{A} \\
\varphi_{A} \\ ...
...} \\
{T_{t}}_{L} \\
B_{\omega L} \\
T_{\omega {L}}
\end{array}\right] \qquad$     (C.2)

Ülekandemaatriks $ \mathbf{U}$ teise märgikokkuleppe puhul on
$\displaystyle \mathbf{U_{8\times 8}} =
\left[\begin{array}{cc}
\mathbf{U_{12\le...
...4\right)}} & 0 \\
0 & \mathbf{U_{22\left(4\times 4\right)}}
\end{array}\right]$     (C.3)

kus alammaatriks $ \mathbf{U_{12\left(4\times 4\right)}}$ kirjeldab tala painet (vt [Lah12Lah12, lk 688]6.1):
$\displaystyle \mathbf{U_{12\left(4\times 4\right)}} =
\left[\begin{array}{cccc}...
...- \frac{x}{EI_{y}} \\
0 & 0 & - 1 & 0 \\
0 & 0 & - x & - 1
\end{array}\right]$     (C.4)

ning alammaatriks $ \mathbf{U_{22\left(4\times 4\right)}}$ õhukeseseinalise tala takistatud väänet:
$\displaystyle \mathbf{U_{22\left(4\times 4\right)}} =
\left[ \begin{array}{cccc...
...mathrm{sh}{{{\kappa x}}}} & -\mathrm{ch}{{{\kappa x}}}
\end{array}\right] \quad$     (C.5)

$ \mathrm{\mathbf{\stackrel{\rm\circ}{Z}}}$ on tala koormusvektor, mis koosneb painde koormusvektorist $ \mathrm{\mathbf{\overset{\rm\circ}{Z}_{11}}}$ ja takistatud väände koormusvektorist $ \mathrm{\mathbf{\overset{\rm\circ}{Z}_{21}}}$:

$\displaystyle \mathbf{\stackrel{\rm\circ}{Z}} =
\left[\begin{array}{c}
\mathbf{...
...{\rm\circ}{Z}_{11}} \\
\mathbf{\stackrel{\rm\circ}{Z}_{21}}
\end{array}\right]$     (C.6)
Painde koormusvektori $ \mathrm{\mathbf{\overset{\rm\circ}{Z}_{11}}}$ (vt [Lah12, avaldis (1.66) 6.2ja tabel G.1 6.3)] saab siirde $ w_{e}$ erilahendite tuletistest:
$\displaystyle \mathbf{\stackrel{\rm\circ}{Z_{11}}} =
\left[\begin{array}{c}
w_{...
...}_{+} - \sum {q}_{z}\frac{\left( x-a_{q}\right)^{2}_{+}}{2!}
\end{array}\right]$     (C.7)

Takistatud väände koormusvektori $ \mathrm{\mathbf{\overset{\rm\circ}{Z}_{21}}}$ saab väändenurga $ \theta_{e}$ erilahendite tuletistest:
$\displaystyle \mathbf{\stackrel{\rm\circ}{Z_{21}}} =
\left[\begin{array}{c}
\th...
... \\
E\hspace*{1pt}I_{\omega}\theta^{\prime\prime\prime}_{e}
\end{array}\right]$     (C.8)

Koormusvektori $ \mathrm{\mathbf{\stackrel{\rm\circ}{Z}}}$ valime tabelitest C.1 ja C.2.

Õhukeseseinalise tala painde ja takistatud väände ülekandevõrrandid võib kirjutada võrrandisüsteemina

$\displaystyle \mathbf{U}\bm{\cdot}\mathbf{Z_{A}} -\mathbf{I_{8\times8}\bm{\cdot} Z_{L}} = \mathbf{ - \stackrel{\rm\circ}{Z}}$     (C.9)

Lühemalt

$\displaystyle \mathbf{\widehat{UI}}_{8\times16}\cdot\mathbf{\widehat{Z}} = \mathbf{-\stackrel{\rm\circ}{Z}}$     (C.10)

kus

$\displaystyle \mathbf{\widehat{Z}} =
\left[\begin{array}{c}
\mathbf{Z_{A}} \\
\mathbf{Z_{L}}
\end{array}\right]$     (C.11)
kus

$\displaystyle \mathbf{Z_{A}} =
\left[\begin{array}{c}
w_{A} \\
\varphi_{A} \\ ...
...\right) \\
Z\left(15,1\right) \\
Z\left(16,1\right)
\end{array}\right] \qquad$     (C.12)

ning laiendatud ülekandemaatriks avaldub

$\displaystyle \mathbf{\widehat{UI}}_{8\times 16} = \boldsymbol{\left( U_{8\times8}\mid -I_{8\times8}\right)}$     (C.13)


Alajaotised
andres
2016-04-13