A.1.1 Introduction to sparse matrices

Figure A.1: Sparsity pattern of matrix spA
\includegraphics[width=0.47\textwidth]{joonised/spGerberBeamA_h6rem.eps}

For calculating support reactions and interaction forces on statically determinate hinged beams, also known as Gerber A.5 A.6 beams (see Fig. A.2), we have a system of equilibrium equations where the coefficient matrix is sparse. The sparsity pattern of this matrix spA is shown in Fig. A.1.

Figure A.2: Assembly sequence of a Gerber beam
\includegraphics[width=140mm]{joonised/tala323Axen.eps}


To prevent a large number of calculations, this system is decomposed in such a way that an unknown force could be calculated directly with each equilibrium equation.

Consider the equilibrium equations for the beams in Fig. A.2:
beam 6-8

$\displaystyle \Sigma M_{6} = 0;$ $\textstyle \qquad$ $\displaystyle \;\;\; X_{8}\cdot 6 + F_{3}\cdot 2 + q\cdot 6\cdot 3 = 0$ (A.1)
$\displaystyle \Sigma M_{8} = 0;$ $\displaystyle -X_{7}\cdot 6 + F_{3}\cdot 4 + q\cdot 6\cdot 3 = 0$ (A.2)
beam 8-12
$\displaystyle \Sigma M_{11} = 0;$ $\displaystyle -X_{8}\cdot 10 - X_{4}\cdot 8 + F_{4}\cdot 4 - F_{5}\cdot 1 = 0$ (A.3)
$\displaystyle \Sigma M_{9} = 0;$ $\displaystyle -X_{8}\cdot 2 + X_{5}\cdot 8 - F_{4}\cdot 4 - F_{5}\cdot 9 = 0$ (A.4)
beam 3-6
$\displaystyle \Sigma M_{3} = 0;$ $\displaystyle -X_{7}\cdot 10 + X_{3}\cdot 8 - F_{2}\cdot 4 - q\cdot 10\cdot 5 = 0$ (A.5)
$\displaystyle \Sigma M_{5} = 0;$ $\displaystyle -X_{7}\cdot 2 - X_{6}\cdot 8 + F_{2}\cdot 4 + q\cdot 10\cdot \left( 5 -2\right) = 0$ (A.6)
beam 1-3
$\displaystyle \Sigma Z = 0;$ $\displaystyle X_{6}- X_{2} + F_{1} = 0$ (A.7)
$\displaystyle \Sigma M_{1} = 0;$ $\displaystyle X_{1} + X_{6}\cdot 4 + F_{1}\cdot 4 = 0$ (A.8)

Now rewrite the systems of equations (A.1)-(A.8) in matrix form:

$\displaystyle \left. \begin{array}{l}
1.\:\: \Sigma M_{6} = 0; \\
2.\:\: \Sigm...
...
X_{3} \\
X_{4} \\
X_{5} \\
X_{6} \\
X_{7} \\
X_{8}
\end{array} \right] =$      
$\displaystyle %
= -\left[ \begin{array}{c}
F_{3}\cdot 2 + q\cdot 6\cdot 3 \\
F...
...0\cdot \left( 5 -2\right) \\
F_{1} \\
F_{1}\cdot 4
\end{array} \right] \qquad$     (A.9)

We have obtained the sparse system ($8\times 8$) of equilibrium equations

$\displaystyle \mathbf{A}\cdot\mathbf{X} = -\mathbf{B}$     (A.10)
where

$\displaystyle \mathbf{A}= \left[ \begin{array}{rrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 ...
...264 \\
-380 \\
580 \\
560 \\
-400 \\
-20 \\
-80
\end{array} \right]
\quad$     (A.11)

The Gerber beam support reactions are calculated by hand in the reverse order to that of the assembly sequence (see calculating order in Eqs. (A.1)-(A.9), and Fig. A.2). The sparsity pattern of the matrix $\mathbf{A}$ of Eq. (A.11) is shown in Fig. A.1.

The non-zero elements of the matrix can be represented as the row ($\mathbf{iv}$), column ($\mathbf{jv}$) and data ($\mathbf{sv}$) vectors in Eq. (A.12).

$\displaystyle \mathbf{iv}$ $\displaystyle \left[ 1{\;}{\;}{\;}{\;}{\;} 2{\;}{\;}{\;}{\;}{\;}{\;}{\;} 3{\;}{...
...}{\;}{\;}{\;} 6{\;}{\;}{\;}{\;}{\;}{\;} 7{\;}{\;} 7{\;}{\;} 8{\;}{\;} 8 \right]$  
$\displaystyle \mathbf{jv}$ $\displaystyle \left[ 8{\;}{\;}{\;}{\;}{\;} 7{\;}{\;}{\;}{\;}{\;}{\;}{\;} 4{\;}{...
...}{\;}{\;}{\;} 7{\;}{\;}{\;}{\;}{\;}{\;} 2{\;}{\;} 6{\;}{\;} 1{\;}{\;} 6 \right]$ (A.12)
$\displaystyle \mathbf{sv}$ $\displaystyle \left[ 6{\;}{\;} -6{\;}{\;} -8{\;}{\;} -10{\;}{\;} 8{\;}{\;} -2{\...
...10{\;}{\;} -8{\;}{\;} -2{\;}{\;} -1{\;}{\;} 1{\;}{\;} 1{\;}{\;} 4 \right]
\quad$  

andres
2014-09-09